Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene exhibits bizarre new behavior well-suited to electronic devices

Scanning tunneling microscope image of a single layer of graphene on platinum with four nanobubbles at the graphene-platinum border and one in the patch interior. The inset shows a high-resolution image of a graphene nanobubble and its distorted honeycomb lattice due to strain in the bubble. (Crommie lab, UC Berkeley image)
Scanning tunneling microscope image of a single layer of graphene on platinum with four nanobubbles at the graphene-platinum border and one in the patch interior. The inset shows a high-resolution image of a graphene nanobubble and its distorted honeycomb lattice due to strain in the bubble. (Crommie lab, UC Berkeley image)

Abstract:
Graphene, a sheet of pure carbon heralded as a possible replacement for silicon-based semiconductors, has been found to have a unique and amazing property that could make it even more suitable for future electronic devices.

Graphene exhibits bizarre new behavior well-suited to electronic devices

Berkeley, CA | Posted on July 30th, 2010

Physicists at the University of California, Berkeley, and the Lawrence Berkeley National Laboratory (LBNL) have found that when graphene is stretched in a specific way it sprouts nanobubbles in which electrons behave in a bizarre way, as if they are moving in a strong magnetic field.

Specifically, the electrons within each nanobubble segregate into quantized energy levels instead of occupying energy bands, as in unstrained graphene. The energy levels are identical to those that an electron would occupy if it were moving in circles in a very strong magnetic field, as high as 300 tesla, which is bigger than any laboratory can produce except in brief explosions, said Michael Crommie, professor of physics at UC Berkeley and a faculty researcher at LBNL. Magnetic resonance imagers use magnets less than 10 tesla, while the Earth's magnetic field at ground level is 31 microtesla.

"This gives us a new handle on how to control how electrons move in graphene, and thus to control graphene's electronic properties, through strain," Crommie said. "By controlling where the electrons bunch up and at what energy, you could cause them to move more easily or less easily through graphene, in effect, controlling their conductivity, optical or microwave properties. Control of electron movement is the most essential part of any electronic device."

Crommie and colleagues report the discovery in the July 30 issue of the journal Science.

Aside from the engineering implications of the discovery, Crommie is eager to use this unusual property of graphene to explore how electrons behave in fields that until now have been unobtainable in the laboratory.

"When you crank up a magnetic field you start seeing very interesting behavior because the electrons spin in tiny circles," he said. "This effect gives us a new way to induce this behavior, even in the absence of an actual magnetic field."

Among the unusual behaviors observed of electrons in strong magnetic fields are the quantum Hall effect and the fractional quantum Hall effect, where at low temperatures electrons also fall into quantized energy levels.

The new effect was discovered by accident when a UC Berkeley postdoctoral researcher and several students in Crommie's lab grew graphene on the surface of a platinum crystal. Graphene is a one atom-thick sheet of carbon atoms arranged in a hexagonal pattern, like chicken wire. When grown on platinum, the carbon atoms do not perfectly line up with the metal surface's triangular crystal
structure, which creates a strain pattern in the graphene as if it were being pulled from three different directions.

The strain produces small, raised triangular graphene bubbles 4 to 10 nanometers across in which the electrons occupy discrete energy levels rather than the broad, continuous range of energies allowed by the band structure of unstrained graphene. This new electronic behavior was detected spectroscopically by scanning tunneling microscopy. These so-called Landau levels are reminiscent of the quantized energy levels of electrons in the simple Bohr model of the atom, Crommie said.

The appearance of a pseudomagnetic field in response to strain in graphene was first predicted for carbon nanotubes in 1997 by Charles Kane and Eugene Mele of the University of Pennsylvania. Nanotubes are a rolled up form of graphene.

Within the last year, however, Francisco Guinea of the Instituto de Ciencia de Materiales de Madrid in Spain, Mikhael Katsnelson of Radboud University of Nijmegen, the Netherlands, and A. K. Geim of the University of Manchester, England predicted what they termed a pseudo quantum Hall effect in strained graphene . This is the very quantization that Crommie's research group has experimentally observed. Boston University physicist Antonio Castro Neto, who was
visiting Crommie's laboratory at the time of the discovery, immediately recognized the implications of the data, and subsequent experiments confirmed that it reflected the pseudo quantum Hall effect predicted earlier.

"Theorists often latch onto an idea and explore it theoretically even before the experiments are done, and sometimes they come up with predictions that seem a little crazy at first. What is so exciting now is that we have data that shows these ideas are not so crazy," Crommie said. "The observation of these giant pseudomagnetic fields opens the door to room-temperature 'straintronics,' the idea of using mechanical deformations in graphene to engineer its behavior for different electronic device applications."

Crommie noted that the "pseudomagnetic fields" inside the nanobubbles are so high that the energy levels are separated by hundreds of millivolts, much higher than room temperature. Thus, thermal noise would not interfere with this effect in graphene even at room temperature. The nanobubble experiments performed in Crommie's laboratory, however, were performed at very low temperature.

Normally, electrons moving in a magnetic field circle around the field lines. Within the strained nanobubbles, the electrons move in circles in the plane of the graphene sheet, as if a strong magnetic field has been applied perpendicular to the sheet even when there is no actual
magnetic field. Apparently, Crommie said, the pseudomagnetic field only affects moving electrons and not other properties of the electron, such as spin, that are affected by real magnetic fields.

Other authors of the report, in addition to Crommie, Castro Neto and Guinea, are Sarah Burke, now a professor at the University of British Columbia; Niv Levy, now a postdoctoral researcher at the National Institute of Technology and Standards; and graduate student Kacey L. Meaker, undergraduate Melissa Panlasigui and physics professor Alex Zettl of UC Berkeley.

The research was funded through the U.S. Department of Energy Office of Science and the U.S. Office of Naval Research.

####

For more information, please click here

Contacts:
SOURCE:
Michael Crommie
(510) 642-9392


Robert Sanders
(510) 643-6998

Copyright © University of California, Berkeley

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

NanoMONITOR shares its latest developments concerning the NanoMONITOR Software and the Monitoring stations April 21st, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Possible Futures

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Russian scientists create new system of concrete building structures: Sientists of Peter the Great Saint-Petersburg Polytechnic University developed a new construction technology April 24th, 2017

Academic/Education

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Rice crew revved for Nanocar Race: Nanocar creator James Tour and team take on international competition with single-molecule marvel April 20th, 2017

The Catholic University of Rome uses the JPK NanoWizard® AFM & CellHesion® systems to understand how cells sense and respond to mechanical stimuli April 5th, 2017

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nanotubes/Buckyballs/Fullerenes

Nanotubes that build themselves April 14th, 2017

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Discoveries

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Announcements

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Graphene holds up under high pressure: Used in filtration membranes, ultrathin material could help make desalination more productive April 24th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Research partnerships

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Nanoparticles open new window for biological imaging: “Quantum dots” that emit infrared light enable highly detailed images of internal body structures April 10th, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project