Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Polymer passage takes time

Abstract:
New theory aids researchers studying DNA, protein transport

Polymer passage takes time

Houston, TX | Posted on July 29th, 2010

Polymer strands wriggle their way through nanometer-sized pores in a membrane to get from here to there and do their jobs. New theoretical research by Rice University scientists quantifies precisely how long the journey takes.

That's a good thing to know for scientists studying the transport of RNA, DNA and proteins -- all of which count as polymers -- or those who are developing membranes for use in biosensors or as drug-delivery devices.

Researchers led by Anatoly Kolomeisky, an associate professor of chemistry and of chemical and biomolecular engineering, have come up with a theoretical method to calculate the time it takes for long-chain polymers to translocate through nano-sized channels in membranes, like the one that separates the nucleus of a cell from surrounding cytoplasm. RNA molecules have to make this intracellular trip, as do proteins that pass through a cell's exterior membrane to perform tasks in the body.

Primary author Kolomeisky reported the findings this month in the Journal of Chemical Physics. Study co-authors include Aruna Mohan, a former postdoctoral research associate at Rice and now a researcher at Exxon-Mobil, and Matteo Pasquali, professor in chemical and biomolecular engineering and chemistry.

The team studied the translocation of a long polymer molecule, which roughly resembles beads on a string, through two types of nanopore geometries: a cylinder and a two-cylinder composite that resembled a large tube connected to a small tube. Not surprisingly, they found a polymer passed more quickly when entering the composite through the wide end.

"We assume the polymer is relatively large in comparison with the size of the pore, which is realistic," Kolomeisky said of the process, which is akin to threading a rope through a peephole. "A typical strand of DNA could be a thousand nanometers long, and the pore could have a length of a few nanometers."

It's been known for some time that polymers don't just fly through a pore, even when they find the opening. They start. They stop. They start again. And once the leading end has entered a pore, it can back out. Polymers often jitter backward and forward as they progress through a pore, constantly reconfiguring themselves.

"Previous theorists thought that as soon as the leading end reached the channel, the whole polymer would go through," he said. "We're saying it goes back and forth many times before it finally passes."

The key to an accurate description of polymer translocation with single-molecule precision is measuring electric currents that go through the pore. "When the current is high, there's no polymer in the channel. When the current is down, it's in the pore and blocking the flux," he said.

Experiments indicate typical DNA and RNA molecules could pass through a membrane in a few milliseconds, depending on the strength of the electric field driving them. But even that, he said, is much longer than researchers previously thought.

Kolomeisky said the new method works for pores of any geometry, whether they're straight, conical or made of joined cylinders of different sizes, like the hemolysin biological channel they simulated in their research.

The calculations apply equally to natural or artificial pores, which he said would be important to scientists making membranes for drug delivery, biosensors or water purification processes, or researching new methods for sequencing DNA.

Grants from the Welch Foundation and the National Science Foundation supported the research.

Read the abstract at jcp.aip.org/jcpsa6/v133/i2/p024902_s1

####

For more information, please click here

Contacts:
Mike Williams
PHONE: 713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Nanomedicine

Teijin to Participate in Nano Tech 2015 January 22nd, 2015

2nd International Conference on Infectious Diseases & Nanomedicine (December 15-18, 2015, Kathmandu, NEPAL) January 22nd, 2015

Anti-microbial coatings with a long-term effect for surfaces – presentation at nano tech 2015 in Japan January 21st, 2015

A spoonful of sugar in silver nanoparticles to regulate their toxicity January 21st, 2015

Sensors

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Iranian Scientists Produce Graphene-Based Oxygen Sensor January 23rd, 2015

Graphene brings quantum effects to electronic circuits January 22nd, 2015

Announcements

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Toyocolor to Launch New Carbon Nanotube Materials at nano tech 2015 January 24th, 2015

NANOPOSTER 2015 - 5th Virtual Nanotechnology Conference - call for abstracts January 24th, 2015

Nanosensor Used for Simultaneous Determination of Effective Tea Components January 24th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

NREL Scientist Brian Gregg Named AAAS Fellow: Gregg honored for distinguished contributions to the field of organic solar photoconversion January 20th, 2015

Nanobiotechnology

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

Photonic crystal nanolaser biosensor simplifies DNA detection: New device offers a simpler and potentially less expensive way to detect DNA and other biomolecules through changes in surface charge density or solution pH January 13th, 2015

Determination of Critical Force, Time for Manipulation of Biological Nanoparticles January 7th, 2015

DNA Origami Could Lead to Nano “Transformers” for Biomedical Applications: Tiny hinges and pistons hint at possible complexity of future nano-robots January 5th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE