Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Polymer passage takes time

Abstract:
New theory aids researchers studying DNA, protein transport

Polymer passage takes time

Houston, TX | Posted on July 29th, 2010

Polymer strands wriggle their way through nanometer-sized pores in a membrane to get from here to there and do their jobs. New theoretical research by Rice University scientists quantifies precisely how long the journey takes.

That's a good thing to know for scientists studying the transport of RNA, DNA and proteins -- all of which count as polymers -- or those who are developing membranes for use in biosensors or as drug-delivery devices.

Researchers led by Anatoly Kolomeisky, an associate professor of chemistry and of chemical and biomolecular engineering, have come up with a theoretical method to calculate the time it takes for long-chain polymers to translocate through nano-sized channels in membranes, like the one that separates the nucleus of a cell from surrounding cytoplasm. RNA molecules have to make this intracellular trip, as do proteins that pass through a cell's exterior membrane to perform tasks in the body.

Primary author Kolomeisky reported the findings this month in the Journal of Chemical Physics. Study co-authors include Aruna Mohan, a former postdoctoral research associate at Rice and now a researcher at Exxon-Mobil, and Matteo Pasquali, professor in chemical and biomolecular engineering and chemistry.

The team studied the translocation of a long polymer molecule, which roughly resembles beads on a string, through two types of nanopore geometries: a cylinder and a two-cylinder composite that resembled a large tube connected to a small tube. Not surprisingly, they found a polymer passed more quickly when entering the composite through the wide end.

"We assume the polymer is relatively large in comparison with the size of the pore, which is realistic," Kolomeisky said of the process, which is akin to threading a rope through a peephole. "A typical strand of DNA could be a thousand nanometers long, and the pore could have a length of a few nanometers."

It's been known for some time that polymers don't just fly through a pore, even when they find the opening. They start. They stop. They start again. And once the leading end has entered a pore, it can back out. Polymers often jitter backward and forward as they progress through a pore, constantly reconfiguring themselves.

"Previous theorists thought that as soon as the leading end reached the channel, the whole polymer would go through," he said. "We're saying it goes back and forth many times before it finally passes."

The key to an accurate description of polymer translocation with single-molecule precision is measuring electric currents that go through the pore. "When the current is high, there's no polymer in the channel. When the current is down, it's in the pore and blocking the flux," he said.

Experiments indicate typical DNA and RNA molecules could pass through a membrane in a few milliseconds, depending on the strength of the electric field driving them. But even that, he said, is much longer than researchers previously thought.

Kolomeisky said the new method works for pores of any geometry, whether they're straight, conical or made of joined cylinders of different sizes, like the hemolysin biological channel they simulated in their research.

The calculations apply equally to natural or artificial pores, which he said would be important to scientists making membranes for drug delivery, biosensors or water purification processes, or researching new methods for sequencing DNA.

Grants from the Welch Foundation and the National Science Foundation supported the research.

Read the abstract at jcp.aip.org/jcpsa6/v133/i2/p024902_s1

####

For more information, please click here

Contacts:
Mike Williams
PHONE: 713-348-6728

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Academic/Education

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Sensors

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

A Sensitive And Dynamic Tactile Sensor Read more from Asian Scientist Magazine at: https://www.asianscientist.com/2017/04/tech/tactile-3d-active-matrix-sensor/ April 18th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Announcements

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Fed grant backs nanofiber development: Rice University joins Department of Energy 'Next Generation Machines' initiative May 10th, 2017

'Hot' electrons don't mind the gap: Rice University scientists find nanogaps in plasmonic gold wires enhance voltage when excited May 8th, 2017

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project