Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanotechnology for water purification

Abstract:
Several nanotechnology approaches to water purification are currently being investigated and some already in use.

Nanotechnology for water purification

Mumbai | Posted on July 28th, 2010

Nanotechnology refers to a broad range of tools, techniques and applications that simply involve particles on the approximate size scale of a few to hundreds of nanometers in diameter. Particles of this size have some unique physicochemical and surface properties that lend themselves to novel uses. Indeed, advocates of nanotechnology suggest that this area of research could contribute to solutions for some of the major problems we face on the global scale such as ensuring a supply of safe drinking water for a growing population, as well as addressing issues in medicine, energy, and agriculture.

Writing in the International Journal of Nuclear Desalination, researchers at the D.J. Sanghvi College of Engineering, in Mumbai, India, explain that there are several nanotechnology approaches to water purification currently being investigated and some already in use. "Water treatment devices that incorporate nanoscale materials are already available, and human development needs for clean water are pressing," Alpana Mahapatra and colleagues Farida Valli and Karishma Tijoriwala, explain.

Water purification using nanotechnology exploits nanoscopic materials such as carbon nanotubes and alumina fibers for nanofiltration, it also utilizes the existence of nanoscopic pores in zeolite filtration membranes, as well as nanocatalysts and magnetic nanoparticles. Nanosensors, such as those based on titanium oxide nanowires or palladium nanoparticles are used for analytical detection of contaminants in water samples.

The impurities that nanotechnology can tackle depend on the stage of purification of water to which the technique is applied, the team adds. It can be used for removal of sediments, chemical effluents, charged particles, bacteria and other pathogens. They explain that toxic trace elements such as arsenic, and viscous liquid impurities such as oil can also be removed using nanotechnology.

"The main advantages of using nanofilters, as opposed to conventional systems, are that less pressure is required to pass water across the filter, they are more efficient, and they have incredibly large surface areas and can be more easily cleaned by back-flushing compared with conventional methods," the team says.

For instance, carbon nanotube membranes can remove almost all kinds of water contaminants including turbidity, oil, bacteria, viruses and organic contaminants. Although their pores are significantly smaller carbon nanotubes have shown to have an equal or a faster flow rate as compared to larger pores, possibly because of the smooth interior of the nanotubes. Nanofibrous alumina filters and other nanofiber materials also remove negatively charged contaminants such as viruses, bacteria, and organic and inorganic colloids at a faster rate than conventional filters.

"While the current generation of nanofilters may be relatively simple, it is believed that future generations of nanotechnology-based water treatment devices will capitalize on the properties of new nanoscale materials," the team says.

The researchers point out that several fundamental aspects of nanotechnology have raised concerns among the public and activist groups. They concede that the risks associated with nanomaterials may not be the same as the risks associated with the bulk versions of the same materials because the much greater surface area to volume ratio of nanoparticles can make them more reactive than bulk materials and lead to so far unrecognized and untested interactions with biological surfaces. Water purification based on nanotechnology has not yet led to any human health or environmental problems but the team echoes the sentiment of others that further research into the biological interactions of nanoparticles should be carried out.

"Nanotechnology for water purification" in Nuclear Desalination, 2010, 4, 49-57

####

For more information, please click here

Contacts:
Alpana Mahapatra

Inderscience Publishers

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Nanotubes/Buckyballs/Fullerenes/Nanorods

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Graphene nanotubes outperform ammonium salts and carbon black in PU applications September 11th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

Peering into private life of atomic clusters -- using the world's tiniest test tubes September 6th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Water

Silver nanoparticles are toxic for aquatic organisms: A research team at the UPV/EHU-University of the Basque Country has analysed how zebrafish are affected in the long term by exposure to silver particles September 19th, 2018

Halas wins American Chemical Society Award in Colloid Chemistry: Rice University nanophotonics pioneer honored for colloid research September 18th, 2018

S, N co-doped carbon nanotube-encapsulated CoS2@Co: Efficient and stable catalysts for water splitting September 10th, 2018

Producing hydrogen from splitting water without splitting hairs: New model explains interactions between small copper clusters used as low-cost catalysts in the production of hydrogen by breaking down water molecules August 31st, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project