Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanotechnology for water purification

Abstract:
Several nanotechnology approaches to water purification are currently being investigated and some already in use.

Nanotechnology for water purification

Mumbai | Posted on July 28th, 2010

Nanotechnology refers to a broad range of tools, techniques and applications that simply involve particles on the approximate size scale of a few to hundreds of nanometers in diameter. Particles of this size have some unique physicochemical and surface properties that lend themselves to novel uses. Indeed, advocates of nanotechnology suggest that this area of research could contribute to solutions for some of the major problems we face on the global scale such as ensuring a supply of safe drinking water for a growing population, as well as addressing issues in medicine, energy, and agriculture.

Writing in the International Journal of Nuclear Desalination, researchers at the D.J. Sanghvi College of Engineering, in Mumbai, India, explain that there are several nanotechnology approaches to water purification currently being investigated and some already in use. "Water treatment devices that incorporate nanoscale materials are already available, and human development needs for clean water are pressing," Alpana Mahapatra and colleagues Farida Valli and Karishma Tijoriwala, explain.

Water purification using nanotechnology exploits nanoscopic materials such as carbon nanotubes and alumina fibers for nanofiltration, it also utilizes the existence of nanoscopic pores in zeolite filtration membranes, as well as nanocatalysts and magnetic nanoparticles. Nanosensors, such as those based on titanium oxide nanowires or palladium nanoparticles are used for analytical detection of contaminants in water samples.

The impurities that nanotechnology can tackle depend on the stage of purification of water to which the technique is applied, the team adds. It can be used for removal of sediments, chemical effluents, charged particles, bacteria and other pathogens. They explain that toxic trace elements such as arsenic, and viscous liquid impurities such as oil can also be removed using nanotechnology.

"The main advantages of using nanofilters, as opposed to conventional systems, are that less pressure is required to pass water across the filter, they are more efficient, and they have incredibly large surface areas and can be more easily cleaned by back-flushing compared with conventional methods," the team says.

For instance, carbon nanotube membranes can remove almost all kinds of water contaminants including turbidity, oil, bacteria, viruses and organic contaminants. Although their pores are significantly smaller carbon nanotubes have shown to have an equal or a faster flow rate as compared to larger pores, possibly because of the smooth interior of the nanotubes. Nanofibrous alumina filters and other nanofiber materials also remove negatively charged contaminants such as viruses, bacteria, and organic and inorganic colloids at a faster rate than conventional filters.

"While the current generation of nanofilters may be relatively simple, it is believed that future generations of nanotechnology-based water treatment devices will capitalize on the properties of new nanoscale materials," the team says.

The researchers point out that several fundamental aspects of nanotechnology have raised concerns among the public and activist groups. They concede that the risks associated with nanomaterials may not be the same as the risks associated with the bulk versions of the same materials because the much greater surface area to volume ratio of nanoparticles can make them more reactive than bulk materials and lead to so far unrecognized and untested interactions with biological surfaces. Water purification based on nanotechnology has not yet led to any human health or environmental problems but the team echoes the sentiment of others that further research into the biological interactions of nanoparticles should be carried out.

"Nanotechnology for water purification" in Nuclear Desalination, 2010, 4, 49-57

####

For more information, please click here

Contacts:
Alpana Mahapatra

Inderscience Publishers

Copyright © Eurekalert

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Nanotubes/Buckyballs

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

University of Houston researchers create new method to draw molecules from live cells: Technique using magnetic nanomaterials offers promise for diagnosis, gene therapy July 17th, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Iranian Scientists Use Waste Cotton Fibers to Produce Cellulose Nanoparticles July 29th, 2014

Water

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Researchers Use Various Zinc Oxide Nanostructures to Boost Efficiency of Water Purification Process July 13th, 2014

Harris & Harris Group Continues Its Blog Series to Highlight Most Impactful Portfolio Companies With Produced Water Absorbents, Inc. July 9th, 2014

LED Lamps Implemented in Removal of Pollutants from Water by Using Nanocatalysts July 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE