Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Multifunctional nanoparticle enables new type of biological imaging

The 30-nanometer particle combines a magnetic core with a thin gold shell, analogous to an eggshell, that surrounds but does not touch the core. Credit: Xiaohu Gao, University of Washington
The 30-nanometer particle combines a magnetic core with a thin gold shell, analogous to an eggshell, that surrounds but does not touch the core. Credit: Xiaohu Gao, University of Washington

Abstract:
Spotting a single cancerous cell that has broken free from a tumor and is traveling through the bloodstream to colonize a new organ might seem like finding a needle in a haystack. But a new imaging technique from the University of Washington is a first step toward making this possible.

By Hannah Hickey

Multifunctional nanoparticle enables new type of biological imaging

Seattle, WA | Posted on July 28th, 2010

UW researchers have developed a multifunctional nanoparticle that eliminates the background noise, enabling a more precise form of medical imaging -- essentially erasing the haystack, so the needle shines through. A successful demonstration with photoacoustic imaging was reported today (July 27) in the journal Nature Communications.

Nanoparticles are promising contrast agents for ultrasensitive medical imaging. But in all techniques that do not use radioactive tracers, the surrounding tissues tend to overwhelm weak signals, preventing researchers from detecting just one or a few cells.

"Although the tissues are not nearly as effective at generating a signal as the contrast agent, the quantity of the tissue is much greater than the quantity of the contrast agent and so the background signal is very high," said lead author Xiaohu Gao, a UW assistant professor of bioengineering.

The newly presented nanoparticle solves this problem by for the first time combining two properties to create an image that is different from what any existing technique could have produced.

The new particle combines magnetic properties and photoacoustic imaging to erase the background noise. Researchers used a pulsing magnetic field to shake the nanoparticles by their magnetic cores. Then they took a photoacoustic image and used image processing techniques to remove everything except the vibrating pixels.

Gao compares the new technique to "Tourist Remover" photo editing software that allows a photographer to delete other people by combining several photos of the same scene and keeping only the parts of the image that aren't moving.

"We are using a very similar strategy," Gao said. "Instead of keeping the stationary parts, we only keep the moving part.

"We use an external magnetic field to shake the particles," he explained. "Then there's only one type of particle that will shake at the frequency of our magnetic field, which is our own particle."

Experiments with synthetic tissue showed the technique can almost completely suppress a strong background signal. Future work will try to duplicate the results in lab animals, Gao said.

The 30-nanometer particle consists of an iron-oxide magnetic core with a thin gold shell that surrounds but does not touch the center. The gold shell is used to absorb infrared light, and could also be used for optical imaging, delivering heat therapy, or attaching a biomolecule that would grab on to specific cells.

Earlier work by Gao's group combined functions in a single nanoparticle, something that is difficult because of the small size.

"In nanoparticles, one plus one is often less than two," Gao said. "Our previous work showed that one plus one can be equal to two. This paper shows that one plus one is, finally, greater than two."

The first biological imaging, in the 1950s, was used to identify anatomy inside the body, detecting tumors or fetuses. The second generation has been used to monitor function -- fMRI, or functional magnetic resonance imaging, for example, detects oxygen use in the brain to produce a picture of brain activity. The next generation of imaging will be molecular imaging, said co-author Matthew O'Donnell, a UW professor of bioengineering and engineering dean.

This will mean that medical assays and cell counts can be done inside the body. In other words, instead of taking a biopsy and inspecting tissue under a microscope, imaging could detect specific proteins or abnormal activity at the source.

But making this happen means improving the confidence limits of the imaging.

"Today, we can use biomarkers to see where there's a large collection of diseased cells," O'Donnell said. "This new technique could get you down to a very precise level, potentially of a single cell."

Researchers tested the method for photoacoustic imaging, a low-cost method now being developed that is sensitive to slight variations in tissues' properties and can penetrate several centimeters in soft tissue. It works by using a pulse of laser light to heat a cell very slightly. This heat causes the cell to vibrate and produce ultrasound waves that travel through the tissue to the body's surface. The new technique should also apply to other types of imaging, the authors said.

Co-authors are UW postdoctoral researchers Yongdong Jin and Sheng-Wen Huang and University of Michigan doctoral student Congxian Jia.

Research was funded by the National Institutes of Health, the National Science Foundation and the UW Department of Bioengineering.

####

For more information, please click here

Contacts:
Xiaohu Gao
206-543-6562


Matthew O'Donnell
206-543-1829


Hannah Hickey

Copyright © University of Washington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Govt.-Legislation/Regulation/Funding/Policy

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

Possible Futures

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Research partnerships

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

'Sudden death' of quantum fluctuations defies current theories of superconductivity: Study challenges the conventional wisdom of superconducting quantum transitions January 12th, 2024

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project