Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Fly Eye Paves the Way for Manufacturing Biomimetic Surfaces

Close up of blowfly eye. Photo Credit: Akhlesh Lakhtakia, Penn State
Close up of blowfly eye. Photo Credit: Akhlesh Lakhtakia, Penn State

Abstract:
Rows of tiny raised blowfly corneas may be the key to easy manufacturing of biomimetic surfaces, surfaces that mimic the properties of biological tissues, according to a team of Penn State researchers.

Fly Eye Paves the Way for Manufacturing Biomimetic Surfaces

University Park, PA | Posted on July 28th, 2010

"Bioreplication began about 2001 or 2002," said Akhlesh Lakhtakia, Godfrey Binder Professor of Engineering Science and Mechanics. "All the techniques currently available are not conducive to mass replications. In many cases you can make as many replicas as you want, but you need an insect for each replication. This is not good for industrial purposes."

Lakhtakia, working with Drew Patrick Pulsifer, graduate student in engineering science and mechanics; Carlo G. Pantano, distinguished professor of materials science and engineering and director of Penn State's Materials Research Institute; and Raúl José Martín-Palma, professor of applied physics, Universidad Autónomia de Madrid, Spain, developed a method to create macroscale molds or dies that retain nanoscale features.

"We needed an object large enough to manipulate that still had nanoscale features," said Lakhtakia.

The researchers chose blowfly eyes because they have potential application in the manufacture of solar cells. Blowflies have compound eyes that are roughly hemispherical; but within that half sphere, the surface is covered by macroscale hexagonal eyes with nanoscale features.

"These eyes are perfect for making solar cells because they would collect more sunlight from a larger area rather than just light that falls directly on a flat surface," said Lakhtakia.

However, in order to work in a manufactured product, the surface needs to retain the overall design in sufficient detail.

The researchers fixed the fly corneas on a glass substrate and filled the back of the corneas with polydimethylsiloxane, a silicone-based organic polymer, so that the metal covering they apply would not seep behind the eyes. They then deposited nickel on the surface using a modified form of the conformal-evaporated-film-by-rotation technique. In this technique, the researchers thermally evaporate the material that forms the coating in a vacuum chamber. The object receiving the coating is fixed to a holder and rotated about once every two seconds.

The researchers used arrays of nine blowfly eyes coated with 250 nanometers of nickel. This initial template was then electroformed -- a method of electroplating -- to deposit nickel on the back to create a master template half a millimeter thick. The thickness of the master template can be thicker.

"Polymer replicas produced . . . by casting did faithfully reproduce features of a few micrometers and larger in dimensions," the researchers reported in the online edition of Bioinspiration & Biomimetics.

The master template can be used either as a die to stamp the pattern or as a mold. The intention is to use the master die/mold to produce not only daughter dies/molds, but to tile the templates so that they can imprint large areas. The researchers will probably expand their template to include 30 blowfly corneas.

"One of the nice things about a conformal coating like this is, it becomes nanograined," said Lakhtakia. "The surface of the die becomes very smooth so the polymer will probably not stick."

Many biological surfaces exist that could create manufacture surfaces for a variety of applications. The researchers are currently looking at butterfly wings to understand how the surfaces create colors without pigment.

"Interestingly, the emerald ash borer, an insect that has recently become a problem in Pennsylvania, mates by color," said Lakhtakia. "Would lures made from templates of the ash borer skin attract males?"

The paper, "Mass Fabrication Technique For Polymeric Replicas Of Arrays Of Insect
Corneas," Bioinspiration & Biomimetics is found at stacks.iop.org/1748-3190/5/036001.

####

For more information, please click here

Contacts:
Dr. Lakhtakia
814-863-4319

Copyright © Penn State

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Possible Futures

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Academic/Education

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Announcements

Leti and Taiwanese Tech Organizations Sponsoring Workshop in Taipei on MEMS, IoT, Smart Lighting Applications, System Reliability & Security September 28th, 2016

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Nanobiotechnology

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

BBI Solutions launches innovative conjugate blocking technology that enhances signal intensity for lateral flow immunoassays September 20th, 2016

Research partnerships

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Tattoo therapy could ease chronic disease: Rice-made nanoparticles tested at Baylor College of Medicine may help control autoimmune diseases September 23rd, 2016

Graphene nanoribbons show promise for healing spinal injuries: Rice University scientists develop Texas-PEG to help knit severed, damaged spinal cords September 19th, 2016

NIST Patents Single-Photon Detector for Potential Encryption and Sensing Apps September 16th, 2016

Solar/Photovoltaic

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

New perovskite research discoveries may lead to solar cell, LED advances September 12th, 2016

NREL discovery creates future opportunity in quantum computing: Research into perovskites looks beyond material's usage for efficient solar cells September 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic