Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Two Catalysts Are Better Than One

Karl Scheidt
Karl Scheidt

Abstract:
New catalytic process could be used to create pharmaceuticals with less chemical waste

By Megan Fellman

Two Catalysts Are Better Than One

Evanston, IL | Posted on July 28th, 2010

Much like two children in the back seat of a car, it can be challenging to get two catalysts to cooperate for the greater good. Now Northwestern University chemists have gotten two catalysts to work together on the same task -- something easily done by nature but a difficult thing to do in the laboratory.

The findings, published by the journal Nature Chemistry, will allow medicinal chemists to invent new reactions and produce valuable bioactive compounds faster with less impact on the environment.

Catalysis is inherently green chemistry. Catalytic reactions typically employ a single molecule (a catalyst) to enhance a reaction or make a reaction possible that wouldn't otherwise be possible. Since a catalyst only needs to be used in very small amounts, the potential to control chemical processes while reducing waste makes catalysis very attractive. The Northwestern team wanted to see if they could turn a good thing -- a single catalyst -- into something even better by employing two catalysts.

"In our new approach, we discovered a pair of catalysts that work cooperatively to produce valuable compounds for biomedical research, which is important given the demand for new pharmaceuticals of all kinds," said senior author Karl A. Scheidt, the Irving M. Klotz Professor of Chemistry in the Weinberg College of Arts and Sciences. "Cooperative catalysis -- using two catalysts instead of just one -- will help us develop important compounds faster and with less waste. It also opens up an exciting new area of catalysis to explore."

Scheidt and his team started with simple stock chemicals and ended up with a number of compounds that are potentially bioactive and similar to each other. In the reaction, catalyst one (a magnesium salt that acts as an electron-deficient "Lewis acid") activates one molecule, and catalyst two (a mimic of thiamine, a carbene and an electron-rich "Lewis base") activates a second molecule simultaneously. The two activated substrates come together. The result is rapid, efficient and controlled production of large amounts of a molecule called gamma-lactam, a key building block for many pharmaceuticals.

On paper, the two catalysts should bind together and not be that effective as catalysts, but, it turns out, they don't interact that tightly. Instead, when there is a substrate for each catalyst, they work in tandem. Before this discovery, no one had identified an electron-deficient metal Lewis acid that works with a carbene. (A carbene is a highly reactive, transient molecule in which a carbon atom has only two bonds versus the normal four.)

"Nature employs a lot of catalysis -- to do such crucial biological transformations as acylations, oxidations and reductions, but it's hard to do what nature does in a flask," said Scheidt, director of Northwestern's Center for Molecular Innovation and Drug Discovery. "Getting two catalysts that are seemingly incompatible to work together is a significant advance. Now we have a great first step to realizing the full potential of this powerful cooperative catalysis strategy. Ultimately, this approach should allow chemists to combine simple components under catalytic conditions to generate new bioactive compounds of high value."

The National Institute of General Medical Sciences and the Alfred P. Sloan Foundation supported the research.

In addition to Scheidt, other authors of the paper are Dustin E. A. Raup, Benoit Cardinal-David and Dane Holte, all from Northwestern.

####

For more information, please click here

Contacts:
Megan Fellman

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Chemistry

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Possible Futures

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Academic/Education

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Nanomedicine

Nanobiotix: The Independent Data Monitoring Committee Recommends the Continuation of the Ongoing Phase II/III Trial of NBTXR3 in Soft Tissue Sarcoma March 23rd, 2017

Nanoparticle paves the way for new triple negative breast cancer drug March 20th, 2017

Block copolymer micellization as a protection strategy for DNA origami March 17th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project