Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Two Catalysts Are Better Than One

Karl Scheidt
Karl Scheidt

Abstract:
New catalytic process could be used to create pharmaceuticals with less chemical waste

By Megan Fellman

Two Catalysts Are Better Than One

Evanston, IL | Posted on July 28th, 2010

Much like two children in the back seat of a car, it can be challenging to get two catalysts to cooperate for the greater good. Now Northwestern University chemists have gotten two catalysts to work together on the same task -- something easily done by nature but a difficult thing to do in the laboratory.

The findings, published by the journal Nature Chemistry, will allow medicinal chemists to invent new reactions and produce valuable bioactive compounds faster with less impact on the environment.

Catalysis is inherently green chemistry. Catalytic reactions typically employ a single molecule (a catalyst) to enhance a reaction or make a reaction possible that wouldn't otherwise be possible. Since a catalyst only needs to be used in very small amounts, the potential to control chemical processes while reducing waste makes catalysis very attractive. The Northwestern team wanted to see if they could turn a good thing -- a single catalyst -- into something even better by employing two catalysts.

"In our new approach, we discovered a pair of catalysts that work cooperatively to produce valuable compounds for biomedical research, which is important given the demand for new pharmaceuticals of all kinds," said senior author Karl A. Scheidt, the Irving M. Klotz Professor of Chemistry in the Weinberg College of Arts and Sciences. "Cooperative catalysis -- using two catalysts instead of just one -- will help us develop important compounds faster and with less waste. It also opens up an exciting new area of catalysis to explore."

Scheidt and his team started with simple stock chemicals and ended up with a number of compounds that are potentially bioactive and similar to each other. In the reaction, catalyst one (a magnesium salt that acts as an electron-deficient "Lewis acid") activates one molecule, and catalyst two (a mimic of thiamine, a carbene and an electron-rich "Lewis base") activates a second molecule simultaneously. The two activated substrates come together. The result is rapid, efficient and controlled production of large amounts of a molecule called gamma-lactam, a key building block for many pharmaceuticals.

On paper, the two catalysts should bind together and not be that effective as catalysts, but, it turns out, they don't interact that tightly. Instead, when there is a substrate for each catalyst, they work in tandem. Before this discovery, no one had identified an electron-deficient metal Lewis acid that works with a carbene. (A carbene is a highly reactive, transient molecule in which a carbon atom has only two bonds versus the normal four.)

"Nature employs a lot of catalysis -- to do such crucial biological transformations as acylations, oxidations and reductions, but it's hard to do what nature does in a flask," said Scheidt, director of Northwestern's Center for Molecular Innovation and Drug Discovery. "Getting two catalysts that are seemingly incompatible to work together is a significant advance. Now we have a great first step to realizing the full potential of this powerful cooperative catalysis strategy. Ultimately, this approach should allow chemists to combine simple components under catalytic conditions to generate new bioactive compounds of high value."

The National Institute of General Medical Sciences and the Alfred P. Sloan Foundation supported the research.

In addition to Scheidt, other authors of the paper are Dustin E. A. Raup, Benoit Cardinal-David and Dane Holte, all from Northwestern.

####

For more information, please click here

Contacts:
Megan Fellman

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

Chemistry

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

Nano-level lubricant tuning improves material for electronic devices and surface coatings February 11th, 2017

Scientists determine precise 3-D location, identity of all 23,000 atoms in a nanoparticle: Berkeley Lab researchers help to map iron-platinum particle in unprecedented detail February 6th, 2017

Possible Futures

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Academic/Education

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Nanomedicine

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Good vibrations help reveal molecular details: Rice University scientists combine disciplines to pinpoint small structures in unlabeled molecules February 15th, 2017

Announcements

New nano approach could cut dose of leading HIV treatment in half February 24th, 2017

Atom-scale oxidation mechanism of nanoparticles helps develop anti-corrosion materials February 24th, 2017

Atomic force imaging used to study nematodes: KFU bionanotechnology lab (head - Dr. Rawil Fakhrullin) has obtained 3-D images of nematodes' cuticles February 23rd, 2017

Particle Works creates range of high performance quantum dots February 23rd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project