Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > X-Ray Vision: Seeing Plastic Mixtures Inside and Out

Abstract:
Simultaneous surface and bulk imaging of polymer blends with X-ray spectromicroscopy

X-Ray Vision: Seeing Plastic Mixtures Inside and Out

UK | Posted on July 27th, 2010

Two scientists working in Europe have paved the way for improved plastic electronics by devising a technique that can be used to take images of plastic mixtures on the nanoscale simultaneously in the body of the material and at the surface.

Low-cost plastic solar cells, brighter displays, and a longer battery life for mobile phones and e-readers are some foreseeable outcomes, as manufactures could use the method to better understand the materials they use.

Chris McNeill of the University of Cambridge (UK) and Ben Watts of the Paul Scherrer Institute (Switzerland) are the researchers behind the breakthrough published in Macromolecular Rapid Communications. They shine synchrotron radiation on polymer mixtures to take sophisticated multiwavelength X-ray images of the bulk of the polymer mixture, and at the same time collect the electrons formed by the interaction of the X-rays with the surface of the sample. The second image can be compared directly with the first to see the differences in distribution of the components in the body of the film and on the surface.

The surface-imaging part works because any photoelectrons formed in the bulk of the material are absorbed before they reach the surface, and hence only those formed at the surface are free to leave the material and create a signal, which is "small, but measurable".

Watts explains that "the X-rays that are shone on the sample are "tuned to the carbon atom", causing the polymers, which are mostly carbon, to "resonate in a way that makes them absorb much more of the light at particular wavelengths than one would otherwise expect. This resonance between the light and atom is also very sensitive to the way in which the atoms are linked together…resulting in [high] contrast between polymer materials that otherwise appear nearly identical." An example is shown in the picture.

"At Cambridge we are interested in the use of semiconducting polymers for applications in solar cells, light-emitting diodes (LEDs), and transistors," says McNeill. "As is the case in other areas of polymer science, the blending of two semiconducting polymers sometimes enables you to achieve properties or function that cannot be achieved with the one polymer alone. The efficiency of polymer solar cells and LEDs are greatly improved through blending, and we are particularly interested in how film microstructure affects device performance. Being able to image not only bulk structure but surface structure as well is critical, as it is the surfaces that connect to the electrodes (and the outside world) so having a technique that helps us to understand how surface and bulk structures are connected was highly desirable.

Both scientists studied in same group in Australia before going separate ways; McNeill to pursue his interest in organic semiconductors, and Watts his in synchrotron-based characterization. Their expertise in complementary areas meant they were abreast of current issues in the field of plastic electronics while being aware of new opportunities for advanced materials characterization.

McNeill: "In a sense all the components required for such an experiment have been available for a while, and it required a realization of this opportunity and the assembly of the components. We acknowledge Rainer Fink of the Universität Erlangen-Nürnberg for first demonstrating the feasibility of the experiment…There were some technical challenges in having to suppress the photoelectrons being emitted from other parts of the experiment in order to detect only those coming from the sample, but these were overcome mostly through Ben's dogged persistence and thoroughness."

They see the work as benefiting not just those working with semiconducting polymers, which are necessary for plastic electronics, but all types of thin-film polymer blends. There may also be applications in other organic, but non-polymer, mixtures or other materials where "characterization of surface and bulk is crucial."

The next steps involve extending the analysis of surface structure to "a full quantitative analysis", according to McNeill, "This would require imaging at multiple X-ray photon energies." But the longer exposure times requires could damage the surfaces being studied. "We are also applying our technique to the study of polycrystalline semiconducting polymer films that will provide insight into the interplay between film microstructure and charge transport in these devices."

Macromol. Rapid Commun. 2010, DOI: 10.1002/marc.201000269

This paper is available online at:

www.materialsviews.com/details/news/761091/XRay_Vision_Seeing_Plastic_Mixtures_Inside_and_Out.html

####

Contacts:
Dr. Christopher McNeill
Room 28 Kapitsa Building,
Cavendish Laboratory,
JJ Thomson Avenue,
Cambridge CB3 0HE.
Tel: +44 (0)1223 337287

Copyright © Materials Science Journals

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Display technology/LEDs/SS Lighting/OLEDs

Research opens door to smaller, cheaper, more agile communications tech February 16th, 2017

Dual-function nanorod LEDs could make multifunctional displays February 11th, 2017

1,000 times more efficient nano-LED opens door to faster microchips February 5th, 2017

Leti Presents First Results in LED Pixelization & Record Resolution for Micro-Displays at Photonics West February 3rd, 2017

Possible Futures

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Academic/Education

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Chip Technology

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Particles from outer space are wreaking low-grade havoc on personal electronics February 19th, 2017

Liquid metal nano printing set to revolutionize electronics: Creating integrated circuits just atoms thick February 18th, 2017

Announcements

Particle Works creates range of high performance quantum dots February 23rd, 2017

GLOBALFOUNDRIES Announces Availability of 45nm RF SOI to Advance 5G Mobile Communications: Optimized RF features deliver high-performance solutions for mmWave beam forming applications in 5G smartphones and base stations February 22nd, 2017

EmTech Asia breaks new barriers with potential applications of space exploration with NASA and MIT February 22nd, 2017

JPK selects compact tensile stage from Deben for their NanoWizard® AFM platform to broaden capabilities for materials characterisation February 22nd, 2017

Energy

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

In-cell molecular sieve from protein crystal February 14th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Tiny nanoclusters could solve big problems for lithium-ion batteries February 21st, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Researchers optimize the assembly of micro-/meso-/macroporous carbon for Li-S batteries February 13th, 2017

Solar/Photovoltaic

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

'Lossless' metamaterial could boost efficiency of lasers and other light-based devices February 20th, 2017

Material can turn sunlight, heat and movement into electricity -- all at once: Extracting energy from multiple sources could help power wearable technology February 9th, 2017

NREL research pinpoints promise of polycrystalline perovskites February 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project