Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > New center to create models, simulations to improve solar cells

This graphic shows color-coded simulation results from advanced computational models used to characterize the properties of materials used in organic photovoltaic solar cells in efforts to better understand the physics involved and to improve the technology. The new Network for Photovoltaic Technology research center led by Purdue University and funded by the Semiconductor Research Corporation, aims to develop such computational capabilities for broad range of PV technologies for higher efficiency and reduced manufacture cost. (B. Ray, P. Nair, E. García, and M. Alam, Purdue University)
This graphic shows color-coded simulation results from advanced computational models used to characterize the properties of materials used in organic photovoltaic solar cells in efforts to better understand the physics involved and to improve the technology. The new Network for Photovoltaic Technology research center led by Purdue University and funded by the Semiconductor Research Corporation, aims to develop such computational capabilities for broad range of PV technologies for higher efficiency and reduced manufacture cost. (B. Ray, P. Nair, E. García, and M. Alam, Purdue University)

Abstract:
Purdue University will lead a new research center to improve photovoltaic solar cells as part of a national effort to bring alternative energy technologies to the marketplace.

New center to create models, simulations to improve solar cells

West Lafayette, IN | Posted on July 27th, 2010

The work is funded by the Semiconductor Research Corporation, a university-research consortium for semiconductors and related technologies. The SRC has established a $5 million energy research initiative, teaming companies with university research centers to work on alternative energy technologies.

The new Network for Photovoltaic Technology will be led by Ashraf Alam, professor of electrical and computer engineering, and Mark Lundstrom, the Don and Carol Scifres Distinguished Professor of Electrical and Computer Engineering.

Work in the center, based at the Birck Nanotechnology Center at Purdue's Discovery Park, will address performance, cost, reliability and manufacturing challenges of photovoltaic cells, which convert sunlight into electricity.

"The center will take advantage of Purdue's extensive modeling and simulation expertise and our national Network for Computational Nanotechnology," said Richard Buckius, Purdue's vice president for research. "The NCN provides analytical models and simulation tools for photovoltaic manufacturers, much as Purdue has done for the semiconductor industry."

Photovoltaics is a clean energy source, and few other power-generating technologies have as little environmental impact. However, the technology faces several hurdles, primarily costs relating to power generation and transmission. Researchers are working to develop new cells that are less expensive to manufacture, which would reduce costs associated with photovoltaics.

In addition to the photovoltaics center, the initiative includes a smart grid research center at Carnegie Mellon University to support the incorporation of renewable energy resources and provide modeling, simulation and control tools needed to manage, optimize and secure the power grid.

Research in the Purdue-based center will initially address the need for new modeling and simulation tools to support the development of improved photovoltaic devices.

Since the 1960s, the semiconductor industry has been developing advanced computational models and simulations, which have become critical for the design of electronic devices and have enabled industry to develop new technologies and products.

"We want to do the same thing for photovoltaics," Lundstrom said. "This will be the first center to emphasize the role of models and simulations in this area, and we will seed knowledge gained in this work to industry and other research centers. We're getting in on the ground floor."

The work will include research to precisely characterize the properties of materials used in photovoltaic cells in efforts to better understand the physics involved. Computational models and simulations will enable researchers to test concepts and reliability and also to accelerate the aging of solar cells to see how long they will last.

"Any estimate of the cost of photovoltaics assumes the cells will last for 20 to 30 years, but what if they're more likely to last 60 years? The cost landscape among competing clean technologies can be altered dramatically as a result," Alam said.

The work builds on previous modeling research led by Alam and Lundstrom to develop advanced models for predicting the performance and reliability of new designs for silicon transistors. The same sort of modeling will now be used for photovoltaics. The initiative also aims to train and educate students, providing them with the expertise and skills needed to transition these new methods into the marketplace.

The work is associated with an interactive Web site called nanoHUB.org, which makes available scientific simulations, seminars, interactive courses and other specialized nanotech-related materials. It is operated by the NCN, a six-university network funded by the National Science Foundation and based at Purdue. The Intel Foundation also provides support.

The Semiconducting Research Corporation defines industry needs and invests in and manages the research that gives its members a competitive advantage in the dynamic global marketplace. Awarded the National Medal of Technology, America's highest recognition for contributions to technology, SRC expands the industry knowledge base and attracts premier students to help innovate and transfer semiconductor technology to the commercial industry. More information about the SRC is available at www.src.org

####

For more information, please click here

Contacts:
Writer:
Emil Venere
765-494-4709


Sources:
Mark Lundstrom
765-494-3515


Ashraf Alam
765-494-6441

Copyright © Purdue University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Academic/Education

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Environment

Nanoparticles Used to Improve Mechanical, Thermal Properties of Cellulose Fibers April 23rd, 2015

Young NTU Singapore spin-off clinches S$4.3 million joint venture with Chinese commercial giant March 23rd, 2015

New processing technology converts packing peanuts to battery components March 22nd, 2015

EU Funded PCATDES Project has completed its half-period with success March 19th, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Solar/Photovoltaic

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Better battery imaging paves way for renewable energy future April 20th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project