Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoparticles Increase Intensity of Quantum Dots' Glow

Photoluminescence enhancement is demonstrated at the single molecule level for two-particle systems composed of a quantum dot (Qdot) and gold nanoparticle (AuNP) linked by double stranded DNA (dsDNA) when optically excited with wavelengths within the surface plasmon resonance range of the gold nanoparticle.
Photoluminescence enhancement is demonstrated at the single molecule level for two-particle systems composed of a quantum dot (Qdot) and gold nanoparticle (AuNP) linked by double stranded DNA (dsDNA) when optically excited with wavelengths within the surface plasmon resonance range of the gold nanoparticle.

Abstract:
Demonstration of precision DNA-based nanoassembly method could lead to advances in solar cells, optoelectronics, and biosensors

Nanoparticles Increase Intensity of Quantum Dots' Glow

Upton, NY | Posted on July 26th, 2010

By linking individual semiconductor quantum dots with gold nanoparticles, scientists at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory have demonstrated the ability to enhance the intensity of light emitted by individual quantum dots by up to 20 times. The precision method for making the light-emitting particle clusters — published online July 26, 2010 in the journal ChemComm — will greatly advance scientists' ability to study and modify the optical properties of quantum dots, and could eventually lead to improved solar energy conversion devices, light-controlled electronics, and biosensors.

"Quantum dots — tiny crystals of semiconductor materials that fluoresce, or emit light, in response to photoexcitation — have enormous potential for use in a wide range of fields from solar energy conversion to computing and medicine," said Mircea Cotlet, a physical chemist at Brookhaven's Center for Functional Nanomaterials (CFN) and lead author on the current study. "But many factors can influence the light they emit, and it's hard to sort out the contributions of these factors in large samples due to the inherent ensemble averaging. Building single-molecule structures at the CFN seemed the ideal way to tease out these effects."

The Brookhaven team recently developed a precision technique for building such nano-sized structures using short strands of DNA as a highly specific "glue" to link particles together.

"DNA consists of two strands with complementary pairings of bases that stick together in only one way," explained Oleg Gang, leader of the team that developed the technique. "By varying the length of the individual strands and attaching complementary pieces to the particles we want to join, and anchoring the whole process on an assembly surface, we can precisely control the construction of individual nanoclusters."

In the current study, the team used this multi-step process to attach semiconductive quantum dots to gold nanoparticles. Metallic materials are known to affect the optical properties of quantum dots, either by enhancing or inhibiting photoluminescence, depending on a range of factors including the size and shape of the materials, the distance between them, and the wavelength of light used to induce photoexcitation.

The precision assembly technique allowed the scientists to control the size, shape, and distance factors to a high degree of precision and test the effect of wavelength in isolation. They specifically chose two wavelengths to test: one close to the so-called "plasmon resonance" of the gold nanoparticles — that is, a wavelength that induces a collective oscillation of the material's conductive electrons, leading to strong absorption of light at that wavelength — and one outside this range.

The wavelength within the plasmon resonance range enhanced photoluminescence approximately four-fold when compared with the luminescence achieved by the wavelength outside the plasmon resonance range. When compared with the photoluminescence of individual quantum dots not linked to gold nanoparticles, the resonant wavelength enhanced photoluminescence of the gold-linked quantum dots by an order of magnitude.

"This ability to control the excitonic properties in plasmonic fluorescent quantum dots is essential to the development of devices such as solar cells, light emitting diodes, or optical circuits and might improve the sensitivity of quantum-dot based biosensing assays," Cotlet said.

In addition to Mircea Cotlet and Oleg Gang from Brookhaven, Mathew Maye (now at Syracuse University) contributed to this work. The research was performed at the Center for Functional Nanomaterials at Brookhaven National Laboratory and was supported by the Office of Science of the U.S. Department of Energy.

The Center for Functional Nanomaterials at BNL is one of the five DOE Nanoscale Science Research Centers, premier national user facilities for interdisciplinary research at the nanoscale that are supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories.

Related Links

*DNA-Based Assembly Line for Precision Nano-Cluster Construction:

www.bnl.gov/bnlweb/pubaf/pr/PR_display.asp?prID=921

BNL's CFN: www.bnl.gov/cfn/
DOE NSRCs: nano.energy.gov

####

About Brookhaven National Laboratory
One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit, applied science and technology organization.

For more information, please click here

Contacts:
Karen McNulty Walsh
(631) 344-8350

Peter Genzer
(631) 344-3174

Copyright © Brookhaven National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Possible Futures

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Sensors

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

New micro-supercapacitor structure inspired by the intricate design of leaves: A team of scientists in Korea has devised a new method for making a graphene film for supercapacitors July 2nd, 2015

Carnegie Mellon chemists characterize 3-D macroporous hydrogels: Methods will allow researchers to develop new 'smart' materials June 30th, 2015

Announcements

Tel Aviv/Tsinghua University project uses crowd computing to improve water filtration: The research, a product of the new TAU-Tsinghua XIN Center, was conducted by 150,000 volunteers at IBM's World Community Grid July 6th, 2015

Transition from 3 to 2 dimensions increases conduction, MIPT scientists discover July 6th, 2015

A Stretchy Mesh Heater for Sore Muscles July 6th, 2015

BBC World Service to broadcast Forum discussion on graphene July 6th, 2015

Quantum Dots/Rods

Producing spin-entangled electrons July 2nd, 2015

Philips Introduces Quantum Dot TV with Color IQ™ Technology from QD Vision: Manufacturer is first to offer quantum dot displays for both TVs and monitors June 30th, 2015

Biomanufacturing of CdS quantum dots: A bacterial method for the low-cost, environmentally-friendly synthesis of aqueous soluble quantum dot nanocrystals June 24th, 2015

Iranian Researchers Model, Design Optical Switches June 13th, 2015

Photonics/Optics/Lasers

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

Solar/Photovoltaic

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

Toward tiny, solar-powered sensors: New ultralow-power circuit improves efficiency of energy harvesting to more than 80 percent June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project