Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Caltech-led Team Gets up to $122 Million for Energy Innovation Hub

Abstract:
Caltech will partner with Lawrence Berkeley Nat. Lab. and other CA institutions to develop method to produce fuels from sunlight

Caltech-led Team Gets up to $122 Million for Energy Innovation Hub

Pasadena, CA | Posted on July 25th, 2010

As part of a broad effort to achieve breakthrough innovations in energy production, U.S. Deputy Secretary of Energy Daniel Poneman today announced an award of up to $122 million over five years to a multidisciplinary team of top scientists to establish an Energy Innovation Hub aimed at developing revolutionary methods to generate fuels directly from sunlight.

The hub will be directed by Nathan S. Lewis, George L. Argyros Professor and professor of chemistry at the California Institute of Technology (Caltech).

The Joint Center for Artificial Photosynthesis (JCAP), to be led by Caltech in partnership with the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab), will bring together leading researchers in an ambitious effort aimed at simulating nature's photosynthetic apparatus for practical energy production. The goal of the hub is to develop an integrated solar energy-to-chemical fuel conversion system and move this system from the bench-top discovery phase to a scale where it can be commercialized.

"The Energy Innovation Hubs have enormous potential to advance transformative breakthroughs," says Deputy Secretary Poneman. "Finding a cost-effective way to produce fuels as plants do-combining sunlight, water, and carbon dioxide-would be a game changer, reducing our dependence on oil and enhancing energy security. This Energy Innovation Hub will enable our scientists to combine their talents to tackle this bold and highly promising challenge."

Lewis, who will lead the multi-institutional team, says, "The sun is by far the largest source of energy available to man, but we must find a way to cheaply capture, convert, and store its energy if we are to build a complete clean energy system. Making fuels directly from sunlight presents an exciting opportunity to focus the efforts of teams of leading scientists onto developing the breakthroughs that are required to obtain a safe and secure energy future for all nations."

The hubs are large, multidisciplinary, highly collaborative teams of scientists and engineers working over a longer time frame to achieve a specific high-priority goal. They are managed by top teams of scientists and engineers with enough resources and authority to move quickly in response to new developments.

On the Caltech campus, the center will be housed in the Jorgensen Laboratory building.

"Caltech is honored to be chosen by the Department of Energy to lead its new Energy Innovation Hub, and I am confident that this bold public-private partnership envisioned by President Obama will ultimately help develop significant clean energy solutions and create green jobs," says Caltech President Jean-Lou Chameau. "Caltech's history of solving the most difficult, multidisciplinary, scientific problems, and the strong commitment to energy innovation through our new Resnick Sustainability Institute, make us uniquely suited to help make fuels from the sun an efficient and economical part of our nation's energy strategy."

JCAP research will be directed at the discovery of the functional components necessary to assemble a complete artificial photosynthetic system: light absorbers, catalysts, molecular linkers, and separation membranes. The hub will then integrate those components into an operational solar fuel system and develop strategies to move from the laboratory toward commercial viability. The ultimate objective is to drive the field of solar fuels from fundamental research, where it has resided for decades, into applied research and technology development, thereby setting the stage for the creation of a direct solar fuels industry.

Other members of the hub leadership team include: Bruce Brunschwig (Caltech); Peidong Yang (UC Berkeley/Berkeley Lab); and Harry Atwater, Caltech's Howard Hughes Professor, professor of applied physics and materials science, and director of the Resnick Institute, which will work in conjunction with the new center to foster transformational advances in energy science. Atwater and Lewis are both founding board members of the Kavli Nanoscience Institute based at Caltech.

The JCAP Proposal Leadership team included Heinz Frei and Elaine Chandler of Berkeley Lab, as well as Eric McFarland of the University of California, Santa Barbara and Jens Norskov of the SLAC National Accelerator Lab. Also involved at Caltech will be Harry Gray, the Arnold O. Beckman Professor of Chemistry; Jonas Peters, the Bren Professor of Chemistry; and Michael Hoffman, the James Irvine Professor of Environmental Science.

In addition to the major partners, Caltech and Berkeley Lab, other participating institutions include SLAC, Stanford University; UC Berkeley; UC Santa Barbara; UC Irvine; and UC San Diego.

Selection was based on a competitive process using scientific peer review. The selection process for the Fuels from Sunlight Hub was managed by the Department of Energy Office of Science, which will have federal oversight responsibilities for the artificial photosynthesis Hub.

The hub will be funded at up to $22 million this fiscal year. The hub will then be funded at an estimated $25 million per year for the next four years, subject to congressional appropriations. More information on the hubs can be found at: www.energy.gov/hubs/

####

For more information, please click here

Contacts:
Jon Weiner

Copyright © Caltech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Jobs

Leading Advanced Materials Manufacturer Pixelligent Closes $10.4 Million in Funding: Capital Will Boost Capacity for North American Manufacturing, Drive Asian Expansion, and Continue Innovation in Solid State Lighting and OLED Display Applications August 16th, 2016

SUNY Poly Welcomes DPS as the Global Engineering Firm Opens Its U.S. Advanced Technology Group Headquarters at Cutting-Edge ZEN Building November 20th, 2015

SUNY Poly CNSE Announces Milestone as M+W Group Opens U.S. Headquarters at Albany Nanotech Complex and Research Alliance Begins $105M Solar Power Initiative October 20th, 2015

Global Engineering Firm DPS to Establish U.S. Advanced Technology Group Headquarters at SUNY Poly CNSE and Create 56 New Jobs Under STARTUP-NY Initiative October 6th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Academic/Education

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizardŽ AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Announcements

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

Environment

Researchers watch catalysts at work August 19th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

SLAC, Stanford gadget grabs more solar energy to disinfect water faster: Plopped into water, a tiny device triggers the formation of chemicals that kill microbes in minutes August 15th, 2016

'Liquid fingerprinting' technique instantly identifies unknown liquids: Ability to instantly identify unknown liquids in the field could aid first responders, improve plant safety August 4th, 2016

Energy

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Research partnerships

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

Tracing barnacle's footprint August 19th, 2016

Solar/Photovoltaic

Let's roll: Material for polymer solar cells may lend itself to large-area processing: 'Sweet spot' for mass-producing polymer solar cells may be far larger than dictated by the conventional wisdom August 12th, 2016

NREL technique leads to improved perovskite solar cells August 11th, 2016

Making a solar energy conversion breakthrough with help from a ferroelectrics pioneer: Philadelphia-based team shows how a ferroelectric insulator can surpass shockley-queisser limit August 9th, 2016

Tiny high-performance solar cells turn power generation sideways August 5th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic