Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Caltech-led Team Gets up to $122 Million for Energy Innovation Hub

Abstract:
Caltech will partner with Lawrence Berkeley Nat. Lab. and other CA institutions to develop method to produce fuels from sunlight

Caltech-led Team Gets up to $122 Million for Energy Innovation Hub

Pasadena, CA | Posted on July 25th, 2010

As part of a broad effort to achieve breakthrough innovations in energy production, U.S. Deputy Secretary of Energy Daniel Poneman today announced an award of up to $122 million over five years to a multidisciplinary team of top scientists to establish an Energy Innovation Hub aimed at developing revolutionary methods to generate fuels directly from sunlight.

The hub will be directed by Nathan S. Lewis, George L. Argyros Professor and professor of chemistry at the California Institute of Technology (Caltech).

The Joint Center for Artificial Photosynthesis (JCAP), to be led by Caltech in partnership with the U.S. Department of Energy's (DOE) Lawrence Berkeley National Laboratory (Berkeley Lab), will bring together leading researchers in an ambitious effort aimed at simulating nature's photosynthetic apparatus for practical energy production. The goal of the hub is to develop an integrated solar energy-to-chemical fuel conversion system and move this system from the bench-top discovery phase to a scale where it can be commercialized.

"The Energy Innovation Hubs have enormous potential to advance transformative breakthroughs," says Deputy Secretary Poneman. "Finding a cost-effective way to produce fuels as plants do-combining sunlight, water, and carbon dioxide-would be a game changer, reducing our dependence on oil and enhancing energy security. This Energy Innovation Hub will enable our scientists to combine their talents to tackle this bold and highly promising challenge."

Lewis, who will lead the multi-institutional team, says, "The sun is by far the largest source of energy available to man, but we must find a way to cheaply capture, convert, and store its energy if we are to build a complete clean energy system. Making fuels directly from sunlight presents an exciting opportunity to focus the efforts of teams of leading scientists onto developing the breakthroughs that are required to obtain a safe and secure energy future for all nations."

The hubs are large, multidisciplinary, highly collaborative teams of scientists and engineers working over a longer time frame to achieve a specific high-priority goal. They are managed by top teams of scientists and engineers with enough resources and authority to move quickly in response to new developments.

On the Caltech campus, the center will be housed in the Jorgensen Laboratory building.

"Caltech is honored to be chosen by the Department of Energy to lead its new Energy Innovation Hub, and I am confident that this bold public-private partnership envisioned by President Obama will ultimately help develop significant clean energy solutions and create green jobs," says Caltech President Jean-Lou Chameau. "Caltech's history of solving the most difficult, multidisciplinary, scientific problems, and the strong commitment to energy innovation through our new Resnick Sustainability Institute, make us uniquely suited to help make fuels from the sun an efficient and economical part of our nation's energy strategy."

JCAP research will be directed at the discovery of the functional components necessary to assemble a complete artificial photosynthetic system: light absorbers, catalysts, molecular linkers, and separation membranes. The hub will then integrate those components into an operational solar fuel system and develop strategies to move from the laboratory toward commercial viability. The ultimate objective is to drive the field of solar fuels from fundamental research, where it has resided for decades, into applied research and technology development, thereby setting the stage for the creation of a direct solar fuels industry.

Other members of the hub leadership team include: Bruce Brunschwig (Caltech); Peidong Yang (UC Berkeley/Berkeley Lab); and Harry Atwater, Caltech's Howard Hughes Professor, professor of applied physics and materials science, and director of the Resnick Institute, which will work in conjunction with the new center to foster transformational advances in energy science. Atwater and Lewis are both founding board members of the Kavli Nanoscience Institute based at Caltech.

The JCAP Proposal Leadership team included Heinz Frei and Elaine Chandler of Berkeley Lab, as well as Eric McFarland of the University of California, Santa Barbara and Jens Norskov of the SLAC National Accelerator Lab. Also involved at Caltech will be Harry Gray, the Arnold O. Beckman Professor of Chemistry; Jonas Peters, the Bren Professor of Chemistry; and Michael Hoffman, the James Irvine Professor of Environmental Science.

In addition to the major partners, Caltech and Berkeley Lab, other participating institutions include SLAC, Stanford University; UC Berkeley; UC Santa Barbara; UC Irvine; and UC San Diego.

Selection was based on a competitive process using scientific peer review. The selection process for the Fuels from Sunlight Hub was managed by the Department of Energy Office of Science, which will have federal oversight responsibilities for the artificial photosynthesis Hub.

The hub will be funded at up to $22 million this fiscal year. The hub will then be funded at an estimated $25 million per year for the next four years, subject to congressional appropriations. More information on the hubs can be found at: www.energy.gov/hubs/

####

For more information, please click here

Contacts:
Jon Weiner

Copyright © Caltech

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Deep Space Industries and SFL selected to provide satellites for HawkEye 360’s Pathfinder mission: The privately-funded space-based global wireless signal monitoring system will be developed by Deep Space Industries and UTIAS Space Flight Laboratory May 26th, 2016

Jobs

SUNY Poly Welcomes DPS as the Global Engineering Firm Opens Its U.S. Advanced Technology Group Headquarters at Cutting-Edge ZEN Building November 20th, 2015

SUNY Poly CNSE Announces Milestone as M+W Group Opens U.S. Headquarters at Albany Nanotech Complex and Research Alliance Begins $105M Solar Power Initiative October 20th, 2015

Global Engineering Firm DPS to Establish U.S. Advanced Technology Group Headquarters at SUNY Poly CNSE and Create 56 New Jobs Under STARTUP-NY Initiative October 6th, 2015

SUNY Poly Announces Joint Development Agreement with INFICON to Establish Cutting Edge R&D Partnership Supporting New York State’s Rapidly Expanding Nanoelectronics Industry September 23rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Academic/Education

Graphene: Progress, not quantum leaps May 23rd, 2016

Smithsonian Science Education Center and National Space Society Team Up for Next-Generation Space Education Program "Enterprise In Space" May 11th, 2016

The University of Colorado Boulder, USA, combines Raman spectroscopy and nanoindentation for improved materials characterisation May 9th, 2016

Albertan Science Lab Opens in India May 7th, 2016

Announcements

PETA science group publishes a review on pulmonary effects of nanomaterials: Archives of Toxicology publishes a review of scientific studies on fibrotic potential of nanomaterials May 26th, 2016

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Thermal modification of wood and a complex study of its properties by magnetic resonance May 26th, 2016

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

Environment

The next generation of carbon monoxide nanosensors May 26th, 2016

Novel functionalized nanomaterials for CO2 capture May 10th, 2016

First single-enzyme method to produce quantum dots revealed: Biological manufacturing process, pioneered by three Lehigh University engineers, produces equivalent quantum dots to those made chemically--but in a much greener, cheaper way May 9th, 2016

Los Alamos National Laboratory Expands Scope to Locus Technologies SaaS Contract: Los Alamos National Laboratory Adds Two New Applications to Locus SaaS Platform May 7th, 2016

Energy

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Gigantic ultrafast spin currents: Scientists from TU Wien (Vienna) are proposing a new method for creating extremely strong spin currents. They are essential for spintronics, a technology that could replace today's electronics May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Technique improves the efficacy of fuel cells: Research demonstrates a new phase transition from metal to ionic conductor May 18th, 2016

Research partnerships

Finding a new formula for concrete: Researchers look to bones and shells as blueprints for stronger, more durable concrete May 26th, 2016

The next generation of carbon monoxide nanosensors May 26th, 2016

Revealing the nature of magnetic interactions in manganese oxide: New technique for probing local magnetic interactions confirms 'superexchange' model that explains how the material gets its long-range magnetic order May 25th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

Solar/Photovoltaic

Harnessing solar and wind energy in one device could power the 'Internet of Things' May 26th, 2016

Light can 'heal' defects in new solar cell materials: Defects in some new electronic materials can be removed by making ions move under illumination May 24th, 2016

This 'nanocavity' may improve ultrathin solar panels, video cameras and more May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic