Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Agilent Technologies' Atomic Force Microscope Chosen by Imperial College of London

5500 Atomic Force Microscope (AFM) (N9410S)
5500 Atomic Force Microscope (AFM) (N9410S)

Abstract:
Facilitates Research into Organic and Hybrid Semiconductor Systems and Opto-Electronic Devices

Agilent Technologies' Atomic Force Microscope Chosen by Imperial College of London

Chandler, ZA | Posted on July 24th, 2010

Agilent Technologies Inc. (NYSE: A) today announced the installation of an Agilent 5500 atomic force microscope (AFM) in the Blackett Laboratory, Department of Physics, Imperial College London.

Dr. Thomas Anthopoulos, a reader in Experimental Solid-State Physics, will be the primary user of the new AFM. His main research interests are within the fields of charge-carrier transport in organic, oxide and organic-inorganic hybrid semiconductor systems. Dr. Anthopoulos' research interests also include the development of electronic and optoelectronic devices such as low-cost, large-area integrated microelectronics, discrete optical sensors and optical sensor arrays.

The Agilent 5500 AFM has been optimized to perform precision electrical measurements, in particular, high-spatial-resolution Kelvin force microscopy (KFM) and current sensing. The 5500 also allows high-resolution topographic and phase imaging, as well as offering exceptional environmental control for testing samples under various environmental conditions.

"We are thrilled that Dr. Anthopoulos has chosen to utilize Agilent AFM instrumentation," noted Jeff Jones, operations manager for Agilent's nanoinstrumentation facility in Chandler, Ariz. "Dr. Anthopoulos' research is paving the way for the development of novel organic, inorganic, and hybrid semiconductor systems and cost-effective, high-performance electronic and optoelectronic devices. We look forward to providing him with the state-of-the-art tools and technologies needed to further his work. In particular, we are very excited about the opportunity to support his use of advanced KFM techniques perfected by Dr. Sergei Magonov on the Agilent 5500."

Among Dr. Anthopoulos' ongoing projects are the development of ambipolar organic field-effect transistors; air-stable complementary and complementary-like integrated circuits; light-sensing transistors and integrated optoelectronic circuits; and organic nanoscale channel transistors and integrated circuits. Additional ongoing projects include graphene-based electronic and optoelectronic devices; self-assembling molecular nanodielectrics; and the study of charge-carrier dynamics in organic semiconductors and devices.

"We are very excited about the possibilities that the Agilent 5500 AFM system will enable, especially in our research for novel high-performance semiconducting materials and devices," said Dr. Anthopoulos. "The high-spatial-resolution Kelvin force microscopy and current sensing capabilities of the system combined with its excellent environmental control will allow study of the electronic and structural properties of these novel material systems and devices down to nanometer scale."

####

About Agilent Technologies
Agilent Technologies Inc. (NYSE: A) is the world's premier measurement company and a technology leader in chemical analysis, life sciences, electronics, and communications. The company's 19,000 employees serve customers in more than 110 countries. Agilent had net revenues of $4.5 billion in fiscal 2009. Information about Agilent is available on the Web at www.agilent.com

AFM Instrumentation from Agilent Technologies

Agilent Technologies offers high-precision, modular AFM solutions for research, industry, and education. Exceptional worldwide support is provided by experienced application scientists and technical service personnel. Agilent's leading-edge R&D laboratories ensure the timely introduction and optimization of innovative and easy-to-use AFM technologies.

For more information, please click here

Contacts:
Janet Smith, Americas
+1 970 679 5397


Sarah Calnan, Europe
+44 (118) 927 5101


Iris Ng, Asia
+852 31977979

Copyright © Agilent Technologies

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Academic/Education

Lule University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Announcements

Arrowhead Receives Regulatory Clearance to Begin Phase 1 Study of ARO-AAT for Treatment of Alpha-1 Liver Disease February 22nd, 2018

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Atomic structure of ultrasound material not what anyone expected February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

Tools

MEMS chips get metatlenses: Combining metasurface lenses with MEMS technology could add high-speed scanning and enhance focusing capability of optical systems February 21st, 2018

Oxford Instruments announces Dr Kate Ross as winner of the 2018 Lee Osheroff Richardson Science Prize for North and South America February 20th, 2018

New method enables high-resolution measurements of magnetism February 7th, 2018

Nanometrics Selected for Fab-Wide Process Control Metrology by Domestic China 3D-NAND Manufacturer: Latest Fab Win Includes Comprehensive Suite for Substrate, Thin Film and Critical Dimension Metrology February 7th, 2018

New-Contracts/Sales/Customers

STMicroelectronics Selects GLOBALFOUNDRIES 22FDX to Extend Its FD-SOI Platform and Technology Leadership : GFs FDX technology will enable ST to deliver high-performance, low-power products for next-generation consumer and industrial applications January 9th, 2018

Solid State Laser manufacturer Lasertel Inc. purchases an Oxford Instruments ICPCVD advanced deposition solution for improved device performance November 3rd, 2017

GLOBALFOUNDRIES and Soitec Enter Into Long-term Supply Agreement on FD-SOI Wafers: Strategic milestone to help guarantee a secure, high-volume supply of FD-SOI technology September 20th, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project