Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > K-State researchers find gene-silencing nanoparticles may put end to pesky summer pest

Professor Kun Yan Zhu
Professor Kun Yan Zhu

Abstract:
Summer just wouldn't be complete without mosquitoes nipping at exposed skin. Or would it?

By Greg Tammen

K-State researchers find gene-silencing nanoparticles may put end to pesky summer pest

Manhattan, KS | Posted on July 21st, 2010

Research conducted by a Kansas State University team may help solve a problem that scientists and pest controllers have been itching to for years.

Kun Yan Zhu, professor of entomology, and teammates Xin Zhang, graduate student in entomology from China, and Jianzhen Zhang, a visiting scientist from Shanxi University, China, investigated using nanoparticles to deliver double-stranded ribonucleic acid, dsRNA -- a molecule capable of specifically triggering gene silencing -- into mosquito larvae through their food. By silencing particular genes, Zhu said the dsRNA may kill the developing mosquitoes or make them more susceptible to pesticides.

Gene silencing triggered by dsRNA or small interfering RNA, siRNA, is known as RNA interference, or RNAi.

"RNAi is a specific and effective approach for loss of function studies in virtually all eukaryotic organisms," Zhu said. Eukaryotic organisms have cells that contain a nucleus within which genetic material is carried and can therefore be manipulated. Almost all animals, plants and fungi are eukaryotes.

Once RNAi is triggered, it destroys the messenger RNA, or mRNA, of a particular gene. This prevents the translation of the gene into its product, silencing it. In the case of Zhu's research, RNAi was used to silence genes responsible for the production of chitin, the principle constituent of the exoskeleton in insects, crustaceans and arachnids.

"Since our RNAi is focused on chitin synthesis, the dsRNA that is delivered into the mosquito larvae can basically block the production of chitin," Zhu said.

Though the silencing is not yet 100 percent effective in their study, Zhu said it does leave the mosquito's body with less ability to combat insecticides, which must penetrate the mosquito's exoskeleton. If the gene, called chitin synthase, could be completely silenced, the mosquitoes may die without the use of pesticides because the chitin biosynthesis pathway would be blocked, Zhu said.

Zhu theorized using nanoparticles to deliver dsRNA to mosquito larvae might work because of the low success of manually injecting larvae with dsRNA. Mosquito larvae live in water but because dsRNA quickly dissipates in water, it can't be directly added to the larvae's food source. Zhu's group discovered that using nanoparticles assembled from dsRNA facilitates their ingestion by mosquito larvae because the nanoparticles don't dissolve in water. Zhu said the nanoparticles may also stabilize the dsRNA in water.

"Now insects will have a much greater likelihood of getting these nanoparticles containing the dsRNA into their gut through feeding," Zhu said.

Potentially, bait containing dsRNA-based nanoparticles could be developed for insect control, Zhu said.

"Because we can select specific genes for silencing, and the nanoparticles are formed from chitosan -- a virtually non-toxic and biodegradable polymer -- this pest control technology could target specific pest species while being environmentally friendly," he said.

Mosquitoes were chosen, Zhu said, because of the abundant research on them as human disease vectors. Other insects, though, can have their genes silenced. Zhu and his collaborators also have investigated gene silencing in the European corn borer and in grasshoppers, a major insect pest in China. Nanoparticles did not have to be used because grasshoppers and European corn borers are not aquatic. However, nanoparticle-based RNAi may facilitate the studies on the functions of new genes.

The team's paper, "Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in African malaria mosquito (Anopheles gambiae)," was recently accepted by the journal, Insect Molecular Biology. It has been published online in advance of print.

The research was partially funded by the Kansas Agricultural Experiment Station.

Zhu's upcoming research will focus on gene silencing in agricultural pests.

####

For more information, please click here

Contacts:
News Services
Kansas State University
128 Dole Hall
Manhattan, KS 66506
785-532-2535


Greg Tammen
785-532-2535


Source:
Kun Yan Zhu
785-532-4721

Copyright © Kansas State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

'Squid skin' metamaterials project yields vivid color display: Rice lab creates RGB color display technology with aluminum nanorods September 15th, 2014

Fonon at Cutting-Edge of 3D Military Printing: Live-Combat Scenarios Could See a Decisive Advantage with 3D Printing September 15th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

Announcements

Nanoribbon film keeps glass ice-free: Rice University lab refines deicing film that allows radio frequencies to pass September 16th, 2014

Effective Nanotechnology Innovations to Receive Mustafa Prize September 16th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Simple, Cost-Effective Method Proposed for Synthesizing Zinc Oxide Nanopigments September 15th, 2014

Nanobiotechnology

NanoStruck has a High Recovery Rate on Mine Tailings: retrieval of up to 96% of Gold, 88% of Silver and 86% of Palladium September 12th, 2014

Boosting armor for nuclear-waste eating microbes September 12th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE