Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Institute of Microelectronics and Stanford University to Develop Silicon Nanowire Based Circuits Inspired by the Brain

Abstract:
The Institute of Microelectronics (IME), a research institute of the Agency for Science, Technology and Research (A*STAR), today announced a collaborative partnership with Stanford University to develop silicon nanowire based circuits that are inspired by the brain.

Institute of Microelectronics and Stanford University to Develop Silicon Nanowire Based Circuits Inspired by the Brain

Singapore | Posted on July 21st, 2010

The quest to come up with an artificial system organised like the biological nervous system promises to drive the future of humanoid robots and pave the way for a generation of supercomputers that can perform highly complex decision-making for gaming and defense technologies.

Under the research collaborative agreement, IME and Stanford will jointly develop silicon nanowire based neuromorphic computational elements (silicon neurons) that take advantage of the capabilities of nanowire technology. The electronics systems using neuromorphic designs aim to work like the biological nervous system. The collaboration represents a further expansion of the extensive neuromorphic computing activities at Stanford University and provides a new application opportunity for nanowire transistors developed at IME.

The partnership leverages on the relative strengths of the respective institute. IME is a leading laboratory in the fabrication of nanowire transistors, with considerable progress reported in recent years, including the demonstration of functional circuits. Stanford University, on the other hand, has a leading group in neuromorphic engineering, an approach to designing systems that work like the brain.

The joint project will be led by Dr Navab Singh, Principal Investigator of the NanoElectronics section at IME, and Associate Professor Kwabena Boahen, Director of the Brains In Silicon group at Stanford University. The project will tap Stanford University's expertise in neuromorphic design to model and design silicon neuron circuits. The circuits will be fabricated by IME using state-of-the-art nanowire technology, more specifically, the lateral gate-all-around FUSI gate transistor technology.

"The gate all around (GAA) transistors based on silicon nanowires are considered the most promising alternatives to scaling limitations of planar CMOS technology - foundation of today's electronics. Nanowire transistors offer near ideal subthreshold behaviour, low off state leakage, and high drive current - all the characteristics required to enable a highly integrated design that works with little power, much like the real brain. On the other hand, due to nanowire's structure and strong response in respect to tiny change in dimension, nanowire transistors also exhibit increased variability, strong low frequency and telegraph-style noise that are interesting to niche applications," said Dr Singh.

On the unique characteristics of nanowire transistors, Associate Professor Boahen said, "Our joint mission is to develop revolutionary architectures that would be tolerant to, or better yet, thrive under the variability and noise. Interestingly, variability and noise are key elements of a biological brain."

Professor Dim-Lee Kwong, Executive Director of IME, said, "IME's alliance with Stanford University to develop neuromorphic test circuits will be a window to the future of an emerging discipline that is expected to have a ripple effect on a broad spectrum of industries."

####

About A*STAR
The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences, and physical sciences and engineering research institutes, and seven consortia & centre, which are located in Biopolis and Fusionopolis, as well as their immediate vicinity.

A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners.

For more information about A*STAR, please visit www.a-star.edu.sg.

About the Institute of Microelectronics (IME)
The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, IME's mission is to add value to Singapore's semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge to the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics, and photonics.

For more information, visit IME on the Internet: www.ime.a-star.edu.sg.

For more information, please click here

Contacts:
Song Shin Miin
Industry Development
Institute of Microelectronics
DID: +65-6770 5317

Copyright © A*STAR

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Academic/Education

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

SUNY Board Appoints Dr. Alain Kaloyeros as Founding President of SUNY Polytechnic Institute January 13th, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

SUNY Poly Now Accepting Applications to the Colleges of Nanoscale Science and Engineering for Fall 2015: Full Scholarships Available to Incoming CNSE Students January 7th, 2015

Chip Technology

Creating new materials with quantum effects for electronics January 29th, 2015

Advantest to Exhibit at SEMICON Korea in Seoul, South Korea February 4-6 Showcasing Broad Portfolio of Semiconductor Products, Technologies and Solutions January 29th, 2015

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Announcements

New method allows for greater variation in band gap tunability: The method can change a material's electronic band gap by up to 200 percent January 31st, 2015

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

Everything You Need To Know About Nanopesticides January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Research partnerships

Evidence mounts for quantum criticality theory: Findings bolster theory that quantum fluctuations drive strange electronic phenomena January 30th, 2015

DNA nanoswitches reveal how life's molecules connect: An accessible new way to study molecular interactions could lower cost and time associated with discovering new drugs January 30th, 2015

Made-in-Singapore rapid test kit detects dengue antibodies from saliva: IBN's MedTech innovation simplifies diagnosis of infectious diseases January 29th, 2015

Carbon nanoballs can greatly contribute to sustainable energy supply January 27th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE