Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Spintronics breakthrough documented by UNL MRSEC team

a, è–2è X-ray diffraction pattern of chromia bulk single crystal (upper panel) and thin film (lower panel) showing the chromia (0006) and (00012) peaks, respectively. Copyright Nature
a, è–2è X-ray diffraction pattern of chromia bulk single crystal (upper panel) and thin film (lower panel) showing the chromia (0006) and (00012) peaks, respectively. Copyright Nature

Abstract:
A team at the University of Nebraska-Lincoln's Materials Research Science Engineering Center made a leap forward in modern spintronics, potentially revolutionizing information technology through reduced power consumption, faster processing speed and improved function compared to today's electronics.

By Christian Binek, with Kelly Bartling, University Communications

Spintronics breakthrough documented by UNL MRSEC team

Lincoln, NB | Posted on July 20th, 2010

Led by physicists in the UNL MRSEC, professors Christian Binek and Peter Dowben, together with theorist Kirill Belashchenko and collaborators published "Robust isothermal electric control of exchange bias at room temperature." The article appeared in the June 20 online edition of the journal Nature Materials, and will be published later in the print edition.

"The research team achieved a qualitative leap forward in modern spintronics," said Binek, associate professor of physics and astronomy. "Spintronics is a rapidly evolving research field that exploits the spin degree of freedom of electrons to create an advanced generation of electronic devices. The spin of an electron is a purely quantum mechanical property but can to some extent be pictured in analogy to the classical angular momentum of a spinning top."

Binek said it is this spin degree of freedom that is responsible for the magnetic moment of an electron allowing it to interact with a magnetic field similar to the interaction of a compass needle aligning in Earth's magnetic field. The spin provides an "experimental handle" in addition to the electron charge to control electrons, and thus making spintronic devices feasible.

He said spintronic devices could revolutionize information technology through reduced power consumption, enhanced processing speed, integration density and functionality when compared to present day complementary metal-oxide-semiconductor electronics.

In their experiments the researchers grew a ferromagnetic film on top of chromia, an exotic magnetoelectric material that reacts with excess magnetization when exposed to an electric field. Using specific theoretical insights the researchers realized pure voltage-control of the magnetic state of the ferromagnetic film. Achieving such control at room temperature resembles a significant breakthrough in this research and promises a new route toward voltage-controlled spintronics and electrically controlled magnetism, Binek said.

Under the guidance of Binek, Dowben and Belashchenko, important hands-on contributions came from UNL graduate students Xi He, Yi Wang and UNL postdoctoral researcher Ning Wu, supported by Anthony Caruso from the University of Missouri-Kansas City and Elio Vescovo from Brookhaven National Laboratory.

The paper is published online at www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat2785.html. The National Science Foundation supports this research.

####

For more information, please click here

Contacts:
Christian Binek, Assoc. Professor, Physics and Astronomy
(402) 472-5231

Copyright © University of Nebraska-Lincoln

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Academic/Education

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

Innovation Management and the Emergence of the Nanobiotechnology Industry July 1st, 2014

Albany NanoCollege Faculty Member Selected as Editor-in-Chief of the Prestigious Journal of Electronic Materials July 1st, 2014

Spintronics

University of Illinois study advances limits for ultrafast nano-devices July 10th, 2014

Harnessing magnetic vortices for making nanoscale antennas: Scientists explore ways to synchronize spins for more powerful nanoscale electronic devices April 30th, 2014

Could Diamonds Be A Computer’s Best Friend? Landmark experiment reveals the precious gem’s potential in computing March 24th, 2014

Spintronic Thermoelectric Power Generators: A step towards energy efficient electronic devices March 21st, 2014

Discoveries

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

Research partnerships

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

More than glitter: Scientists explain how gold nanoparticles easily penetrate cells, making them useful for delivering drugs July 21st, 2014

Tiny laser sensor heightens bomb detection sensitivity July 19th, 2014

Labs characterize carbon for batteries: Rice, Lawrence Livermore scientists calculate materials’ potential for use as electrodes July 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE