Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Spintronics breakthrough documented by UNL MRSEC team

a, è–2è X-ray diffraction pattern of chromia bulk single crystal (upper panel) and thin film (lower panel) showing the chromia (0006) and (00012) peaks, respectively. Copyright Nature
a, è–2è X-ray diffraction pattern of chromia bulk single crystal (upper panel) and thin film (lower panel) showing the chromia (0006) and (00012) peaks, respectively. Copyright Nature

Abstract:
A team at the University of Nebraska-Lincoln's Materials Research Science Engineering Center made a leap forward in modern spintronics, potentially revolutionizing information technology through reduced power consumption, faster processing speed and improved function compared to today's electronics.

By Christian Binek, with Kelly Bartling, University Communications

Spintronics breakthrough documented by UNL MRSEC team

Lincoln, NB | Posted on July 20th, 2010

Led by physicists in the UNL MRSEC, professors Christian Binek and Peter Dowben, together with theorist Kirill Belashchenko and collaborators published "Robust isothermal electric control of exchange bias at room temperature." The article appeared in the June 20 online edition of the journal Nature Materials, and will be published later in the print edition.

"The research team achieved a qualitative leap forward in modern spintronics," said Binek, associate professor of physics and astronomy. "Spintronics is a rapidly evolving research field that exploits the spin degree of freedom of electrons to create an advanced generation of electronic devices. The spin of an electron is a purely quantum mechanical property but can to some extent be pictured in analogy to the classical angular momentum of a spinning top."

Binek said it is this spin degree of freedom that is responsible for the magnetic moment of an electron allowing it to interact with a magnetic field similar to the interaction of a compass needle aligning in Earth's magnetic field. The spin provides an "experimental handle" in addition to the electron charge to control electrons, and thus making spintronic devices feasible.

He said spintronic devices could revolutionize information technology through reduced power consumption, enhanced processing speed, integration density and functionality when compared to present day complementary metal-oxide-semiconductor electronics.

In their experiments the researchers grew a ferromagnetic film on top of chromia, an exotic magnetoelectric material that reacts with excess magnetization when exposed to an electric field. Using specific theoretical insights the researchers realized pure voltage-control of the magnetic state of the ferromagnetic film. Achieving such control at room temperature resembles a significant breakthrough in this research and promises a new route toward voltage-controlled spintronics and electrically controlled magnetism, Binek said.

Under the guidance of Binek, Dowben and Belashchenko, important hands-on contributions came from UNL graduate students Xi He, Yi Wang and UNL postdoctoral researcher Ning Wu, supported by Anthony Caruso from the University of Missouri-Kansas City and Elio Vescovo from Brookhaven National Laboratory.

The paper is published online at www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat2785.html. The National Science Foundation supports this research.

####

For more information, please click here

Contacts:
Christian Binek, Assoc. Professor, Physics and Astronomy
(402) 472-5231

Copyright © University of Nebraska-Lincoln

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Possible Futures

Printing Silicon on Paper, with Lasers April 21st, 2015

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Academic/Education

SEFCU, SUNY Poly CNSE Announce Winning Student-Led Teams in the 6th Annual $500,000 New York Business Plan Competition April 25th, 2015

Iranian Female Professor Awarded UNESCO Medal in Nanoscience April 20th, 2015

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

Spintronics

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

On the road to spin-orbitronics: Berkeley Lab researchers find new way to manipulate magnetic domain walls April 13th, 2015

Graphene looking promising for future spintronic devices April 10th, 2015

Discoveries

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Announcements

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Research partnerships

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project