Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Spintronics breakthrough documented by UNL MRSEC team

a, 2 X-ray diffraction pattern of chromia bulk single crystal (upper panel) and thin film (lower panel) showing the chromia (0006) and (00012) peaks, respectively. Copyright Nature
a, 2 X-ray diffraction pattern of chromia bulk single crystal (upper panel) and thin film (lower panel) showing the chromia (0006) and (00012) peaks, respectively. Copyright Nature

Abstract:
A team at the University of Nebraska-Lincoln's Materials Research Science Engineering Center made a leap forward in modern spintronics, potentially revolutionizing information technology through reduced power consumption, faster processing speed and improved function compared to today's electronics.

By Christian Binek, with Kelly Bartling, University Communications

Spintronics breakthrough documented by UNL MRSEC team

Lincoln, NB | Posted on July 20th, 2010

Led by physicists in the UNL MRSEC, professors Christian Binek and Peter Dowben, together with theorist Kirill Belashchenko and collaborators published "Robust isothermal electric control of exchange bias at room temperature." The article appeared in the June 20 online edition of the journal Nature Materials, and will be published later in the print edition.

"The research team achieved a qualitative leap forward in modern spintronics," said Binek, associate professor of physics and astronomy. "Spintronics is a rapidly evolving research field that exploits the spin degree of freedom of electrons to create an advanced generation of electronic devices. The spin of an electron is a purely quantum mechanical property but can to some extent be pictured in analogy to the classical angular momentum of a spinning top."

Binek said it is this spin degree of freedom that is responsible for the magnetic moment of an electron allowing it to interact with a magnetic field similar to the interaction of a compass needle aligning in Earth's magnetic field. The spin provides an "experimental handle" in addition to the electron charge to control electrons, and thus making spintronic devices feasible.

He said spintronic devices could revolutionize information technology through reduced power consumption, enhanced processing speed, integration density and functionality when compared to present day complementary metal-oxide-semiconductor electronics.

In their experiments the researchers grew a ferromagnetic film on top of chromia, an exotic magnetoelectric material that reacts with excess magnetization when exposed to an electric field. Using specific theoretical insights the researchers realized pure voltage-control of the magnetic state of the ferromagnetic film. Achieving such control at room temperature resembles a significant breakthrough in this research and promises a new route toward voltage-controlled spintronics and electrically controlled magnetism, Binek said.

Under the guidance of Binek, Dowben and Belashchenko, important hands-on contributions came from UNL graduate students Xi He, Yi Wang and UNL postdoctoral researcher Ning Wu, supported by Anthony Caruso from the University of Missouri-Kansas City and Elio Vescovo from Brookhaven National Laboratory.

The paper is published online at www.nature.com/nmat/journal/vaop/ncurrent/abs/nmat2785.html. The National Science Foundation supports this research.

####

For more information, please click here

Contacts:
Christian Binek, Assoc. Professor, Physics and Astronomy
(402) 472-5231

Copyright © University of Nebraska-Lincoln

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Possible Futures

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Academic/Education

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Bar-Ilan University to set up quantum research center May 1st, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Spintronics

Smart multi-layered magnetic material acts as an electric switch: New study reveals characteristic of islands of magnetic metals between vacuum gaps, displaying tunnelling electric current March 1st, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Investigations of the skyrmion Hall effect reveal surprising results: One step further towards the application of skyrmions in spintronic devices December 28th, 2016

Electron highway inside crystal December 12th, 2016

Discoveries

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Announcements

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

New metamaterial-enhanced MRI technique tested on humans May 26th, 2017

Controlling 3-D behavior of biological cells using laser holographic techniques May 26th, 2017

Unveiling the quantum necklace: Researchers simulate quantum necklace-like structures in superfluids May 26th, 2017

Research partnerships

Ag/ZnO-Nanorods Schottky diodes based UV-PDs are fabricated and tested May 26th, 2017

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project