Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Drilling down to the nanometer depths of leaves for biofuels

A xylem cell with fluorescent lignocellulose bands as the major feature
A xylem cell with fluorescent lignocellulose bands as the major feature

Abstract:
By imaging the cell walls of a zinnia leaf down to the nanometer scale, energy researchers have a better idea about how to turn plants into biofuels.

Drilling down to the nanometer depths of leaves for biofuels

Livermore, CA | Posted on July 19th, 2010

In a paper appearing online in the journal Plant Physiology, a team from Lawrence Livermore led by Michael Thelen, in collaboration with researchers from Lawrence Berkeley National Lab and the National Renewable Energy Laboratory, has used four different imaging techniques to systematically drill down deep into the cells of Zinnia elegans.

Zinnia is a common garden annual plant with solitary daisy like flower heads on long stems and sandpapery, lace shaped leaves. The leaves of seedlings provide a rich source of single cells that are dark green with chloroplasts and can be cultured in liquid for several days at a time. During the culturing process, the cells change in shape to resemble the tube-like cells that carry water from roots to leaves. Known as xylem, these cells hold the bulk of cellulose and lignin in plants, which are both major targets of recent biofuel research.

Using different microscopy methods, the team was able to visualize single cells in detail, cellular substructures, fine-scale organization of the cell wall, and even chemical composition of single zinnia cells, indicating that they contain an abundance of lignocellulose.

"The basic idea is that cellulose is a polymer of sugars, which if released by enzymes, can be converted into alcohols and other chemicals used in alternative fuel production," Thelen said. "But for this to happen efficiently, we need to find ways to see how this is proceeding at several spatial scales."

To get at the sugars is no easy task. The team had to find ways to overcome the hydrophobic protection of crystalline cellulose provided by lignin in the cell wall. The two polymers, collectively called lignocellulose, are very insoluble, resistant to common chemicals and mechanical breakage, and are a superior substance for providing strength and structure to plants.

The detailed three-dimensional molecular cell wall structure of plants remains poorly understood.

"The capability to image plant cell surfaces at the nanometer scale, together with the corresponding chemical composition, could significantly enhance our understanding of cell wall molecular architecture," said Alex Malkin, a member of the LLNL team who is an expert in atomic force microscopy. "A high resolution structural model is crucial for the successful implementation of new approaches for conversion of biomass to liquid fuels."

To make fuels from plant biomass requires a thorough understanding of the organization of cell walls before determining the best methods for cell wall deconstruction into its components. Catherine Lacayo, a postdoctoral scientist working with Thelen and Malkin, has taken the first steps toward a comprehensive approach.

She came up with techniques that reveal the inner structure of cell walls in these single xylem cells, which represent about 70 percent of the cellulose in plants that can be used in fuel processing. "This approach will be useful for evaluating the responses of plant material to various chemical and enzymatic treatments, and could accelerate the current efforts in lignocellulosic biofuel production."

The research is supported by the Department of Energy Genome Sciences Program through the Office of Biological and Environmental Research, and the DOE's BioEnergy Research Centers in Emeryville and Oak Ridge. It will appear in the September issue of Plant Physiology.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Discoveries

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Announcements

Tough foam from tiny sheets: Rice University lab uses atom-thick materials to make ultralight foam July 29th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

A new way to make microstructured surfaces: Method can produce strong, lightweight materials with specific surface properties July 29th, 2014

Tools

WITec to host the 11th Confocal Raman Imaging Symposium from September 29th - October 1st in Ulm, Germany July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Bruker Announces Acquisition of High-Speed, 3D Super-Resolution Fluorescence Microscopy Company Vutara July 28th, 2014

Malvern Instruments completes acquisition of MicroCal and announces purchase of Archimedes product from Affinity Biosensors July 25th, 2014

Energy

Oregon chemists eye improved thin films with metal substitution: Solution-based inorganic process could drive more efficient electronics and solar devices July 21st, 2014

Steam from the sun: New spongelike structure converts solar energy into steam July 21st, 2014

3-D nanostructure could benefit nanoelectronics, gas storage: Rice U. researchers predict functional advantages of 3-D boron nitride July 15th, 2014

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2014 conference July 8th, 2014

Automotive/Transportation

Stanford team achieves 'holy grail' of battery design: A stable lithium anode - Engineers use carbon nanospheres to protect lithium from the reactive and expansive problems that have restricted its use as an anode July 27th, 2014

Nano-supercapacitors for electric cars July 25th, 2014

Using Sand to Improve Battery Performance: Researchers develop low cost, environmentally friendly way to produce sand-based lithium ion batteries that outperform standard by three times July 8th, 2014

Up in Flames: Evidence Confirms Combustion Theory: Berkeley Lab and University of Hawaii research outlines the story of soot, with implications for cleaner-burning fuels July 1st, 2014

Research partnerships

Breakthrough laser experiment reveals liquid-like motion of atoms in an ultra-cold cluster: University of Leicester research team unlocks insights into creation of new nano-materials July 25th, 2014

A*STAR and industry form S$200M semiconductor R&D July 25th, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE