Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Magnetic Nanoparticles Remove Ovarian Cancer Cells from the Abdominal Cavity

Abstract:
A major complicating factor in the treatment of ovarian cancer is that malignant cells are often shed into the patient's abdominal cavity. These cells can then spread to other tissues, seeding new tumors that make effective therapy difficult. To overcome this problem, researchers at the Georgia Institute of Technology created magnetic nanoparticles that can selectively bind to and remove ovarian tumor cells from abdominal cavity fluid. John F. McDonald led the research team that reported their work in the journal Nanomedicine.

Magnetic Nanoparticles Remove Ovarian Cancer Cells from the Abdominal Cavity

Bethesda, MD | Posted on July 19th, 2010

Research by other investigators had identified a protein known as EphA2 as a highly selective marker for free-floating ovarian cancer cells. Dr. McDonald and his collaborators coated magnetic cobalt-iron oxide nanoparticles with a molecular mimic of the natural ligand for this protein, a molecule known as ephrin-A1, to serve as a trap for ovarian cancer cells floating in ascites fluid, the liquid found in the intestinal cavity. The idea behind this approach is that the nanoparticles could be added to ascites fluid and then trapped with a magnetic, removing any ovarian cancer cells that had bound to the eprhin-A1 mimic.

They first tested their nanoparticles using ascites fluid from mice with human ovarian tumors and found that they could trap free-floating tumor cells using magnetic separation. They then repeated this experiment using ascites fluid obtained from four women with ovarian cancer, and again showed that they could remove all of the EphA2-positive cells from the intestinal fluid samples. The researchers suggest that these nanoparticles could be used in a system that removes ascites fluid from the intestinal cavity, using a relatively non-invasive method akin to dialysis, in conjunction with standard ovarian cancer therapy.

This work is detailed in a paper titled, "Selective removal of ovarian cancer cells from human ascites fluid using magnetic nanoparticles." An abstract of this paper is available at the journal's Web site.

View abstract www.nanomedjournal.com/article/S1549-9634(09)00255-X/abstract

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Academic/Education

JPK’s NanoWizard® AFM and ForceRobot® systems are being used in the field of medical diagnostics in the Supersensitive Molecular Layer Laboratory of POSTECH in Korea June 21st, 2016

Weizmann Institute of Science Presents: Weizmann Wonder Wander - 4G - is Online June 21st, 2016

NanoLabNL boosts quality of research facilities as Dutch Toekomstfonds invests firmly June 10th, 2016

The Institute for Transfusion Medicine at the University Hospital of Duisburg-Essen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles June 7th, 2016

Nanomedicine

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Stealth nanocapsules kill Chagas parasites in mouse models June 22nd, 2016

Announcements

FEI Launches Helios G4 DualBeam Series for Materials Science: The Helios G4 DualBeam Series features new capabilities to enable scientists and engineers to answer the most demanding and challenging scientific questions June 27th, 2016

Superheroes are real: Ultrasensitive nonlinear metamaterials for data transfer June 25th, 2016

Russian physicists create a high-precision 'quantum ruler': Physicists have devised a method for creating a special quantum entangled state June 25th, 2016

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Nanobiotechnology

Nanotechnology and math deliver two-in-one punch for cancer therapy resistance June 24th, 2016

Tailored DNA shifts electrons into the 'fast lane': DNA nanowire improved by altering sequences June 22nd, 2016

Self-assembling icosahedral protein designed: Self-assembling icosahedral protein designed June 22nd, 2016

Stealth nanocapsules kill Chagas parasites in mouse models June 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic