Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanoparticles Assembled Inside Tumors Trap Drugs and Imaging Agents

Abstract:
Virtually every study that uses nanoparticles to deliver drugs and imaging agents to tumors starts by loading the clinical payload into the nanoparticle and then injecting the resulting delivery agent into the body.

Nanoparticles Assembled Inside Tumors Trap Drugs and Imaging Agents

Bethesda, MD | Posted on July 19th, 2010

While effective at reducing clearance from the body and improving drug or imaging agent retention in a tumor, the nanoparticles do move relatively slowly from the circulation into the heart of the tumor.

Now, a pair of investigators from the University of Toronto have shown that a system that assembles itself into a nanoparticle, complete with drug or imaging agent, once it gets inside a tumor can dramatically increase the rate at which clinically important molecules get into tumors and still trap those molecules inside the tumor. Warren Chan and postdoctoral fellow Steven Perrault conducted the study and published the results of their work in the Proceedings of the National Academy of Sciences.

The goal of this project was to develop a nanoparticle system that would combine the fast "in" rate for small molecule drugs or imaging agents with the glacial "out" rate associated with nanoparticles. This would allow as much drug or imaging agent to get into and stay in tumors while allowing the body to excrete rapidly any of the active material that remained in the blood stream or that happened to get inside of non-targeted tissue. To create a system that would marry these two seemingly incompatible characteristics, Drs. Chan and Perrault first inject 30 nanometer diameter gold nanoparticles coated with a biotin terminated polymer; the polmer keeps the particles from sticking to one another and the biotin allows for later conjugation to imaging agents or drugs. Over the course of the next 24 hours, many of the gold nanoparticles accumulate in tumors, while the rest are excreted from the body.

Next, the researchers inject the active substance linked to streptavidin, a molecule that binds tightly and specifically to biotin. This small molecule construct readily enters tumors, as well as other tissues, but once in the tumors it sticks in an almost irreversible manner to the gold nanoparticles, greatly reducing the rate at which the active molecule will exit the tumor.

Using a fluorescent dye as the active molecule linked to streptavidin, Drs. Chan and Perrault were able to track the kinetics of drug accumulation in tumor. The results were remarkable: the active molecule accumulated nearly 200-fold increase in the rate at which drug accumulated in tumors compared to animals that did not receive the biotin-coated gold nanoparticles. In addition, pretreated tumors accumulated five times more of the fluorescent probe than did the control animals.

This work is detailed in a paper titled, "In vivo assembly of nanoparticle components to improve targeted cancer imaging." An abstract of this paper is available at the journal's Web site.

View abstract dx.doi.org/doi:10.1073/pnas.1001367107

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Possible Futures

A glass fiber that brings light to a standstill: By coupling photons to atoms, light in a glass fiber can be slowed down to the speed of an express train; for a short while it can even be brought to a complete stop April 9th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Academic/Education

JPK reports on the use of the NanoWizard® 3 AFM system at the Hebrew University of Jerusalem April 14th, 2015

UK National Graphene Institute Selects Bruker as Official Partner: World-Leading Graphene Research Facility Purchases Multiple Bruker AFMs April 7th, 2015

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

Nanomedicine

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Optical resonance-based biosensors designed for medical applications April 18th, 2015

Nanocomposites Play Effective Role in Production of Smart Fibers April 18th, 2015

Novel nanoparticles could save soldiers' lives after explosions April 15th, 2015

Announcements

Happily ever after: Scientists arrange protein-nanoparticle marriage: New biotech method could lead to development of HIV vaccine, targeted cancer treatment April 20th, 2015

Nondestructive 3-D Imaging of Biological Cells with Sound April 20th, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Yale-NUS, NUS and UT Austin researchers establish theoretical framework for graphene physics: Making strides towards using graphene to create new electronic devices April 20th, 2015

Nanobiotechnology

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Protein Building Blocks for Nanosystems: Scientists develop method for producing bio-based materials with new properties April 17th, 2015

Study shows novel pattern of electrical charge movement through DNA April 14th, 2015

UAB researchers develop a harmless artificial virus for gene therapy April 8th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE