Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanosponge Drug Delivery System More Effective Than Direct Injection

Abstract:
When loaded with an anticancer drug, a delivery system based on a novel material that its creators call a nanosponge is three to five times more effective at reducing tumor growth than direct injection of the same drug. That is the conclusion of a paper published in the journal Cancer Research.

Nanosponge Drug Delivery System More Effective Than Direct Injection

Bethesda, MD | Posted on July 19th, 2010

"Effective targeted drug delivery systems have been a dream for a long time now, but it has been largely frustrated by the complex chemistry that is involved," says Eva Harth of Vanderbilt, who led the nanosponge development team. "We have taken a significant step toward overcoming these obstacles." The current study was a collaboration between Harth's laboratory and that of Dennis Hallahan at the Washington University School of Medicine and Roberto Diaz at Emory University.

"We call the material nanosponge, but it is really more like a three-dimensional network or scaffold," says Harth. The backbone is a long length of polyester. It is mixed in solution with small molecules called cross-linkers that act like tiny grappling hooks to fasten different parts of the polymer together. The net effect is to form spherically shaped particles filled with cavities where drug molecules can be stored. The polyester is biodegradable, so it breaks down gradually in the body. As it does, it releases the drug it is carrying in a predictable fashion.

"Predictable release is one of the major advantages of this system compared to other nanoparticle delivery systems under development," says Harth. When they reach their target, many other systems unload most of their drug in a rapid and uncontrollable fashion. This is called the burst effect and makes it difficult to determine effective dosage levels.

Another major advantage is that the nanosponge particles are soluble in water. Encapsulating the anti-cancer drug in the nanosponge allows the use of hydrophobic drugs that do not dissolve readily in water. Currently, these drugs must be mixed with another chemical, called an adjuvant reagent, which reduces the efficacy of the drug and can have adverse side-effects.

It is also possible to control the size of nanosponge particles. By varying the proportion of cross-linker to polymer, the nanosponge particles can be made larger or smaller. This is important because research has shown that drug delivery systems work best when they are smaller than 100 nanometers. The nanosponge particles used in the current study were 50 nanometers in size.

The targeting peptide used in the animal studies was developed by the Hallahan laboratory, which also tested the system's effectiveness in tumor-bearing mice. The peptide used in the study is one that selectively binds to a protein found on tumors that have been treated with radiation. The researchers used the nanoparticles to deliver paclitaxel to tumors in this study. The researchers recorded the response of two different tumor types - slow-growing human breast cancer and fast-acting mouse glioma - to single injections. In both cases they found that it increased the death of cancer cells and delayed tumor growth "in a manner superior to known chemotherapy approaches."

The next step is to perform an experiment with repeated injections to see if the nanosponge system can stop and reverse tumor growth. Harth is also planning to perform the more comprehensive toxicity studies on her nanoparticle delivery system that are required before it can be used in clinical trials.

This work, which was supported in part by the National Cancer Institute, is detailed in a paper titled, "Targeted Nanoparticles That Deliver a Sustained, Specific Release of Paclitaxel to Irradiated Tumors." An abstract of this paper is available at the journal's Web site.

View abstract cancerres.aacrjournals.org/content/70/11/4550

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with todays explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Possible Futures

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Academic/Education

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

The 2017 Winners for Generation Nano June 8th, 2017

MIT Energy Initiative awards 10 seed fund grants for early-stage energy research May 4th, 2017

Nanomedicine

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Announcements

Ultrathin device harvests electricity from human motion July 23rd, 2017

The July 23 close fly-by of asteroid 2017 BS5 is explored in a Q&A with Dr. John S. Lewis, chief scientist at Deep Space Industries July 23rd, 2017

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Nanobiotechnology

Probiotics: Novel biosynthetic tool to develop metallic nanoparticles: This research article by Dr. Nida Akhtar et al has been published in Recent Patents on Drug Delivery & Formulation, Volume 11, Issue 1, 2017 July 20th, 2017

Semiliquid chains pulled out of a sea of microparticles July 20th, 2017

Researchers revolutionize vital conservation tool with use of gold nanotechnology and lasers: Cryopreservation study results have sweeping implications for wildlife conservation and human health July 15th, 2017

Nanomedicine opens door to precision medicine for brain tumors July 12th, 2017

Research partnerships

Studying Argon Gas Trapped in Two-Dimensional Array of Tiny "Cages": Understanding how individual atoms enter and exit the nanoporous frameworks could help scientists design new materials for gas separation and nuclear waste remediation July 17th, 2017

Coupling a nano-trumpet with a quantum dot enables precise position determination July 14th, 2017

GLOBALFOUNDRIES and VeriSilicon To Enable Single-Chip Solution for Next-Gen IoT Networks: Integrated solution leverages GFs 22FDX technology to decrease power, area, and cost for NB-IoT and LTE-M applications July 14th, 2017

Carbon displays quantum effects July 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project