Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Sugar-Coated Nanotubes Deliver High-Dose Radiotherapy

Abstract:
Starting with simple carbon nanotubes, a team of researchers from the United Kingdom and Spain has developed a sugar-coated nanocapsule that can deliver large doses of radioactivity to tumors.

Sugar-Coated Nanotubes Deliver High-Dose Radiotherapy

Bethesda, MD | Posted on July 19th, 2010

The researchers envision developing a series of nanoscale delivery devices that can target specific organs in the body for radiation therapy or imaging by tinkering with the sugar coating on the nanocapsule.

The research team was led by Benjamin Davis of Oxford University, Kostas Kostarelos of the University of London, and , and Gerard Tobias of the Institut de Cičncia de Materials de Barcelona. The investigators reported the results of their work in the journal Nature Materials.

To create their loaded nanotubes, the investigators prepare a mixture of carbon nanotubes and sodium iodide made from radioactive iodine-125 inside a silica ampoule and heated it to 900° C for four hours. When heated to this temperature, sodium iodide and other metal salts form nanocrystals inside the nanotubes. As the nanotubes cool, their ends self-seal, trapping the radioactive nanocrystals safely inside the carbon containers. After washing the sealed tubes to remove any salts that aren't encased, the researchers then perform a mild chemical reaction that leaves the end caps unaltered while adding chemical groups to which sugar molecules can attach. In a final step, the scientists add one of many types of sugar molecules to the nanotube surface. In this study, they used a simple sugar known as N-acetyl glucosamine. The researchers note that this synthetic scheme can be used to add other radioactive metal salts to nanotubes and to add other sugar molecules to the surface of the nanotubes.

Numerous tests showed that radioactive payload remained trapped in the sealed nanotubes under a variety of physiological conditions. When injected into tail vein of mice, the researchers were able to image the nanotubes as they accumulated in the lungs using a common imaging technology known as single photon emission computed tomography, or SPECT.

When injected into the body, free sodium iodide normally concentrates in the thyroid gland, not the lungs. The carbon nanotubes did not accumulate in liver, spleen, and kidneys or other organs that usually accumulate injected nanoparticles. The researchers hypothesize that N-acetyl glucosamine targets the nanotubes to the lung by binding to a lung-specific protein known to bind tightly to this sugar.

This work is detailed in a paper titled, "Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging." An abstract of this paper is available at the journal's Web site.

View abstract dx.doi.org/doi:10.1038/nmat2766

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale Trojan horses treat inflammation May 24th, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Possible Futures

Nanoscale Trojan horses treat inflammation May 24th, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Nanotubes/Buckyballs/Fullerenes

Programmable materials find strength in molecular repetition May 23rd, 2016

Nanotubes are beacons in cancer-imaging technique: Rice University researchers use spectral triangulation to pinpoint location of tumors May 21st, 2016

Unveiling the electron's motion in a carbon nanocoil: Development of a precise resistivity measurement system for quasi-one-dimensional nanomaterials using a focused ion beam May 16th, 2016

New research shows how silver could be the key to gold-standard flexible gadgets: Silver nanowires are an ideal material for current and future flexible touch-screen technologies May 13th, 2016

Nanomedicine

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Announcements

Nanoscale Trojan horses treat inflammation May 24th, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Rice de-icer gains anti-icing properties: Dual-function, graphene-based material good for aircraft, extreme environments May 23rd, 2016

Graphene makes rubber more rubbery May 23rd, 2016

Nanobiotechnology

Nanoscale Trojan horses treat inflammation May 24th, 2016

Programmable materials find strength in molecular repetition May 23rd, 2016

Tiny packages may pack powerful treatment for brain tumors: Nanocarrier provides efficient delivery of chemotherapeutic drug May 23rd, 2016

Two-stage nanoparticle delivery of piperlongumine and TRAIL anti-cancer therapy May 23rd, 2016

Research partnerships

Mille-feuille-filter removes viruses from water May 19th, 2016

Carnegie Mellon develops bio-mimicry method for preparing and labeling stem cells: Method allows researchers to prepare mesenchymal stem cells and monitor them using MRI May 19th, 2016

The CEA Announces Expanded Collaboration with Intel to Advance Cutting-edge Research and Innovation in Key Digital Areas May 17th, 2016

Physicists measure van der Waals forces of individual atoms for the first time May 14th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic