Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Sugar-Coated Nanotubes Deliver High-Dose Radiotherapy

Abstract:
Starting with simple carbon nanotubes, a team of researchers from the United Kingdom and Spain has developed a sugar-coated nanocapsule that can deliver large doses of radioactivity to tumors.

Sugar-Coated Nanotubes Deliver High-Dose Radiotherapy

Bethesda, MD | Posted on July 19th, 2010

The researchers envision developing a series of nanoscale delivery devices that can target specific organs in the body for radiation therapy or imaging by tinkering with the sugar coating on the nanocapsule.

The research team was led by Benjamin Davis of Oxford University, Kostas Kostarelos of the University of London, and , and Gerard Tobias of the Institut de Cičncia de Materials de Barcelona. The investigators reported the results of their work in the journal Nature Materials.

To create their loaded nanotubes, the investigators prepare a mixture of carbon nanotubes and sodium iodide made from radioactive iodine-125 inside a silica ampoule and heated it to 900° C for four hours. When heated to this temperature, sodium iodide and other metal salts form nanocrystals inside the nanotubes. As the nanotubes cool, their ends self-seal, trapping the radioactive nanocrystals safely inside the carbon containers. After washing the sealed tubes to remove any salts that aren't encased, the researchers then perform a mild chemical reaction that leaves the end caps unaltered while adding chemical groups to which sugar molecules can attach. In a final step, the scientists add one of many types of sugar molecules to the nanotube surface. In this study, they used a simple sugar known as N-acetyl glucosamine. The researchers note that this synthetic scheme can be used to add other radioactive metal salts to nanotubes and to add other sugar molecules to the surface of the nanotubes.

Numerous tests showed that radioactive payload remained trapped in the sealed nanotubes under a variety of physiological conditions. When injected into tail vein of mice, the researchers were able to image the nanotubes as they accumulated in the lungs using a common imaging technology known as single photon emission computed tomography, or SPECT.

When injected into the body, free sodium iodide normally concentrates in the thyroid gland, not the lungs. The carbon nanotubes did not accumulate in liver, spleen, and kidneys or other organs that usually accumulate injected nanoparticles. The researchers hypothesize that N-acetyl glucosamine targets the nanotubes to the lung by binding to a lung-specific protein known to bind tightly to this sugar.

This work is detailed in a paper titled, "Filled and glycosylated carbon nanotubes for in vivo radioemitter localization and imaging." An abstract of this paper is available at the journal's Web site.

View abstract dx.doi.org/doi:10.1038/nmat2766

####

About NCI Alliance for Nanotechnology in Cancer
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Copyright © NCI Alliance for Nanotechnology in Cancer

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Metal oxide sandwiches: New option to manipulate properties of interfaces February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Possible Futures

Scientists create laser-activated superconductor February 8th, 2016

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

A fast solidification process makes material crackle February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Nanotubes/Buckyballs/Fullerenes

The iron stepping stones to better wearable tech without semiconductors February 8th, 2016

Nano-coating makes coaxial cables lighter: Rice University scientists replace metal with carbon nanotubes for aerospace use January 28th, 2016

Scientists provide new guideline for synthesis of fullerene electron acceptors January 28th, 2016

Nanostructural Changes in Solar Cells to Increase Their Efficiency January 28th, 2016

Nanomedicine

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Announcements

Scientists create laser-activated superconductor February 8th, 2016

Canadian physicists discover new properties of superconductivity February 8th, 2016

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

From allergens to anodes: Pollen derived battery electrodes February 8th, 2016

Nanobiotechnology

Leading bugs to the death chamber: A kinder face of cholesterol February 8th, 2016

UTHealth research looks at nanotechnology to help prevent preterm birth February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Hepatitis virus-like particles as potential cancer treatment February 5th, 2016

Research partnerships

Scientists create laser-activated superconductor February 8th, 2016

Nanoscale cavity strongly links quantum particles: Single photons can quickly modify individual electrons embedded in a semiconductor chip and vice versa February 8th, 2016

A fast solidification process makes material crackle February 8th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic