Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NIH awards Rice $1.7M for cartilage-regeneration research

Abstract:
Bioengineers explore whether adult stem cells can help heal joints

NIH awards Rice $1.7M for cartilage-regeneration research

Houston, TX | Posted on July 19th, 2010

Bioengineers from Rice University's BioScience Research Collaborative have won a $1.7 million grant from the National Institutes of Health to develop an injectable mix of polymers and adult stem cells that can spur the growth of new cartilage in injured knees and other joints.

"Millions of people live with pain, limited mobility and arthritis that often result from cartilage injuries, particularly those to the knee," said Rice researcher Kurt Kasper, a principal investigator on the new five-year grant. "By combining just enough of a patient's own stem cells with the proper mix of growth factors and polymers, we hope to allow the body to do something it cannot normally do -- fill in small gaps with healthy, new bone-protecting cartilage."

The research lies at the cutting-edge of basic science and engineering, and Kasper said a human treatment, if it proves feasible, would still be at least a decade away.

In joints like the knee, elbow and shoulder, a thin layer of cartilage covers and protects the bones at the point where they meet and rotate against one another. This "articular" cartilage is one of many types of cartilage found in the body, and it has wondrous material properties. For example, it's so impact-resistant and resilient that no currently available synthetic materials can stand up to the punishment it endures.

Because no synthetics can suitably replace articular cartilage, and because the body has almost no natural ability to repair it, Kasper and other researchers are looking for ways to reinforce and expand upon the healing abilities the body already has.

Rice's research team on the new project includes Kasper, a faculty fellow in the Department of Bioengineering, and Antonios Mikos, the Louis Calder Professor of Bioengineering, professor in chemical and biomolecular engineering and director of Rice's Center for Excellence in Tissue Engineering.

The team will use mesenchymal stem cells (MSCs), a type of stem cell that the body uses naturally to repair broken bones, injured skin and other tissues. Researchers have long known that MSCs can be coaxed into becoming cartilage-generating cells with the right combination of growth factors.

"We aim to find the optimal formulation of MSCs and growth factors for regenerating articular cartilage," Mikos said. "We will deliver that mix in a nontoxic, biodegradable polymer system that can be injected as a liquid and that gels quickly to form a temporary support matrix to guide the growth of the new cartilage."

Kasper said a unique aspect of the study is its focus on developing techniques that will allow the newly formed cartilage to attach naturally to the underlying bone in the joint. To do this, the team hopes to develop a two-layered system where the upper layer of articular cartilage is grown atop a segment of newly formed bone. A different formulation of growth factors and MSCs will be needed in each layer, and tests in animals will be used to determine the optimal mix that might be needed for future clinical translation to humans.

####

About Rice University
Located in Houston, Rice University is consistently ranked one of America's best teaching and research universities. Known for its "unconventional wisdom," Rice is distinguished by its: size -- 3,279 undergraduates and 2,277 graduate students; selectivity -- 12 applicants for each place in the freshman class; resources -- an undergraduate student-to-faculty ratio of 5-to-1; sixth largest endowment per student among American private research universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work.

For more information, please click here

Contacts:
Jade Boyd
Associate Director and Science Editor
Office of Public Affairs/News & Media Relations
Rice University
(office) 713-348-6778
(cell) 713-302-2447

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Possible Futures

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Announcements

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Research partnerships

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

The relationship between charge density waves and superconductivity? It's complicated July 19th, 2018

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project