Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > GE Using Nanotechnology to Green the Alberta Oil Sands

With support from Climate Change and Emissions Management Corporation (CCEMC), GE is working with the University of Alberta and Alberta Innovates Technology Futures to develop CO2 capture technology that could be used to reduce carbon emissions in the Oil Sands. In the future, this technology could support CO2 capture in power plants (e.g. the Integrated Gasification Combined Cycle (IGCC) plant pictured at right) and also be used in water treatment processes. Pictured left is the natural zeolite materials that GE and its project partners are basing their membrane technology on. (Photo: Business Wire)
With support from Climate Change and Emissions Management Corporation (CCEMC), GE is working with the University of Alberta and Alberta Innovates Technology Futures to develop CO2 capture technology that could be used to reduce carbon emissions in the Oil Sands. In the future, this technology could support CO2 capture in power plants (e.g. the Integrated Gasification Combined Cycle (IGCC) plant pictured at right) and also be used in water treatment processes. Pictured left is the natural zeolite materials that GE and its project partners are basing their membrane technology on. (Photo: Business Wire)

Abstract:
New CO2 capture technology under development could reduce CO2 emissions from the production of synthetic crude oil from the Oil Sands by up to 25%

GE Using Nanotechnology to Green the Alberta Oil Sands

Niskayuna, NY | Posted on July 18th, 2010

In the quest to develop more cost-effective ways to reduce carbon emissions from fossil fuels, GE (GE 14.55, -0.70, -4.59%) is partnering with the University of Alberta (UA) and Alberta Innovates Technology Futures (AITF) on a $4 million CO2 capture project supported by the Climate Change and Emissions Management (CCEMC) Corporation.

This team is leveraging cutting-edge research in nanotechnology to tackle two of the most pressing environmental challenges facing the Oil Sands -- reduction of CO2 emissions associated with the extraction and upgrading process, and treatment of produced water generated during the oil recovery.

The technology is based on naturally occurring zeolites identified by UA. These materials are rocks with molecularly sized pores, which allow small molecules to enter while excluding larger molecules. Zeolites are widely used in the chemical industry as catalysts, and this project seeks to form these materials into membranes that can be used for high temperature gas separation. The materials also have the potential to be used as filters for contaminated water. The CCEMC is providing $2 million in support of this project, with an equal cost share from GE and its project partners.

Anthony Ku, a chemical engineer and project leader for GE Global Research on the CO2 capture project, said, "This project is a great example of how partnership between academic research organizations and industry can lead to meaningful innovation. We're excited to be working with the CCEMC and some of Alberta's best and brightest research minds to take an interesting material identified in a university lab and figure out how to build a prototype that will be tested in the field."

Ku noted that the successful commercialization and widespread adoption of this technology could reduce CO2 emissions from the production of synthetic crude oil from the Oil Sands by up to 25%.

With fossil fuels like coal, oil and natural gas projected to be a large portion of our energy mix for decades to come, GE is committed to developing new, cost-effective technologies for the management of greenhouse gas emissions. This technology collaboration is supported in part through GE's ecomagination initiative. Ecomagination represents GE's commitment to deliver new clean products and technologies to market for its customers and society. Recently, the company pledged to double its investment in clean R&D over the next five years from $5 billion to $10 billion.

####

About GE
GE is a diversified global infrastructure, finance and media company that is built to meet essential world needs. From energy, water, transportation and health to access to money and information, GE serves customers in more than 100 countries and employs more than 300,000 people worldwide. For more information, visit the company's Web site at www.ge.com. GE is Imagination at Work.

GE Global Research is the hub of technology development for all of GE's businesses. GE scientists and engineers redefine what's possible, drive growth for their businesses and find answers to some of the world's toughest problems.

Through sites in Niskayuna, New York; Bangalore, India; Shanghai, China and Munich, Germany, GE innovates 24 hours a day. Visit GE Global Research on the Web at www.ge.com/research. Connect with GE technologists at edisonsdesk.com and twitter.com/edisonsdesk.

About the CCEMC
The CCEMC is a not-for-profit organization whose mandate is to establish or participate in funding for initiatives that reduce greenhouse gas emissions and support adaptation. The CCEMC invests in discovery, development, and operational deployment of clean technologies.

For more information, please click here

Contacts:
Media Relations
Todd Alhart
518-387-7914

Copyright © GE

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Leti Presents Advances in Propagation Modeling and Antenna Design for mmWave Spectrum: Paper Is One of 15 that Leti Presented at European Conference on Antennas and Propagation March 19-24 March 23rd, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Academic/Education

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Nominations Invited for $250,000 Kabiller Prize in Nanoscience: Major international prize recognizes a visionary nanotechnology researcher February 20th, 2017

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Investments/IPO's/Splits

Harris & Harris Group Issues Its Financial Statements as of December 31, 2016, Posts Its Annual Shareholder Letter, And Will Host a Conference Call for Shareholders on Friday, March 17, 2017 March 15th, 2017

Harris & Harris Group Announces the Filing of Preliminary Proxy Materials Detailing Its Proposed Conversion From a BDC to a Registered Closed-End Fund January 24th, 2017

Harris & Harris Group Issues Reminder for Shareholder Update Call on January 10, 2017 January 10th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Announcements

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Environment

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Pulverizing e-waste is green, clean -- and cold: Rice, Indian Institute researchers use cryo-mill to turn circuit boards into separated powders March 21st, 2017

Nanogate Expands Sustainability Management: Nanogate publishes a statement of compliance with the German Sustainability Code for the first time March 15th, 2017

Optical fingerprint can reveal pollutants in the air: Researchers at Chalmers University of Technology have proposed a new, sophisticated method of detecting molecules with sensors based on ultra-thin nanomaterials March 15th, 2017

Energy

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Alliances/Trade associations/Partnerships/Distributorships

AIM Photonics Welcomes Coventor as Newest Member: US-Backed Initiative Taps Process Modeling Specialist to Enable Manufacturing of High-Yield, High-Performance Integrated Photonic Designs March 16th, 2017

Applied Graphene Materials plc - Significant commercial progress in AGM’s three core sectors March 3rd, 2017

Strem Chemicals and Dotz Nano Ltd. Sign Distribution Agreement for Graphene Quantum Dots Collaboration February 21st, 2017

Leti Coordinating Project to Adapt Obstacle-Detection Technology Used in Autonomous Cars for Portable and Wearable Systems: INSPEX to Combine Knowhow of Nine European Organizations to Create Portable and Wearable Spatial-Exploration Systems February 2nd, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project