Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Vorbeck Materials announces collaboration with PNNL to develop graphene product for batteries

Abstract:
Vorbeck Materials Corp., in collaboration with the Pacific Northwest National Laboratory (PNNL), operated by Battelle for the Department of Energy, announces a cooperative research and development agreement (CRADA) to develop Li-ion battery electrodes using Vorbeck's unique graphene material, Vor-xTM. These new battery materials could enable electronic devices and power tools that recharge in minutes rather than hours or function as part of a hybrid battery system to extend the range of electric vehicles.

Vorbeck Materials announces collaboration with PNNL to develop graphene product for batteries

Jessup, MD | Posted on July 14th, 2010

PNNL, in collaboration with Prof. Ilhan Aksay's group at Princeton University, has demonstrated that small quantities of high-quality graphene can dramatically improve the power and cycling stability of Li-ion batteries, while maintaining high-energy storage capacities. This advance can lead to batteries that both store large amounts of energy and recharge quickly - breaking traditional trade-offs in battery design between high-capacity and high-power/fast-recharge cells. PNNL and Princeton's pioneering work in the field of graphene-based battery electrodes, together with Vorbeck's leading expertise in the production and application of high-quality graphene, will enable the rapid commercialization of this energy storage technology upon completion of the CRADA. Vorbeck is already working with materials distribution and supply company, Targray Technology International, to bring novel battery electrode materials to market.

"PNNL battery materials synthesis expertise, their pioneering work in this area and IP position, together with Vorbeck's leading work in graphene production and commercialization is a strong combination," stated John Lettow, President of Vorbeck Materials, "We are excited to be working with the talented team at PNNL and to add battery electrode materials to our list of graphene-based products, furthering the work on applications of graphene developed in collaboration with Princeton University and our commercial partners."

Gordon Graff, project manager at PNNL, commented that, "Vorbeck produces a very high quality graphene and they have demonstrated an ability to get products successfully to market. We believe that Vorbeck is an excellent partner with whom to commercialize some of our most innovative battery work."

####

About Vorbeck Materials
Vorbeck Materials Corp. was established in 2006 to manufacture and develop applications using Vor-x™, Vorbeck’s patented graphene material developed at Princeton University.

Vorbeck became the first company to successfully commercialize a graphene product in 2009 with the introduction of Vor-ink, a graphene-based conductive ink.

For more information, please click here

Contacts:
Vorbeck Materials Corp.
Kristen Silverberg
301-497-9000

Copyright © Vorbeck Materials

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Possible Futures

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nanotubes/Buckyballs/Fullerenes

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Nano-chimneys can cool circuits: Rice University scientists calculate tweaks to graphene would form phonon-friendly cones January 4th, 2017

WPI researchers build liquid biopsy chip that detects metastatic cancer cells in blood December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Announcements

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Nanoscale view of energy storage January 16th, 2017

One step closer to reality: Devices that convert heat into electricity: Composite material yields 10 times -- or higher -- voltage output January 4th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Research partnerships

New, old science combine to make faster medical test: Nanoparticles and Faraday rotation allow faster diagnoses January 23rd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

Chemistry on the edge: Experiments at Berkeley Lab confirm that structural defects at the periphery are key in catalyst function January 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project