Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Imec’s SiGe MEMS technology platform improves performance of state-of-the-art MEMS

Abstract:
Imec demonstrates the value of its SiGe above-IC MEMS technology platform for improving performance of state-of-the-art MEMS with the development of new MEMS devices. The new devices are a 15µm SiGe micromirror and a grating light valve for high-resolution displays. The devices were realized with imec's generic CMOS-compatible MEMS process for the monolithic integration of MEMS devices directly on top of CMOS metallization.

Imec’s SiGe MEMS technology platform improves performance of state-of-the-art MEMS

Leuven, Belgium | Posted on July 14th, 2010

The 15µm micromirror, designed for use in display systems, uses an innovative electrostatic actuation mechanism relying on 6 electrodes. The design enables analog pulse-width modulation (PWM) instead of the binary-weighed PWM of current state-of-the-art MEMS-based micromirrors. This novel actuation mechanism allows display of a large range of grey-scale values, while binary-weighed PWM depends on the number of sub-frames or bit-planes. Using analog PWM thus leads to higher response speed, less image processing hardware and less memory. Moreover, the analog PWM is implemented on the MEMS level instead of on the CMOS level, allowing a simplified electronic circuit.

The second device is a grating light valve, a MEMS reflection grating producing bright and dark pixels in a display system by controlled diffraction of incident light due to electrostatic deflection of microbeams. The grating light valve uses clamped-clamped microbeams which are suspended over an electrode. It can modulate the intensity of the diffracted light when an actuation voltage is applied to half of the beams. Display systems using such a technology provide a high contrast ratio, high resolution and high brightness. Both the mirrors and grating light valves are realized with a 300nm thick SiGe structural layer.

The devices have been realized in the frame of the Flemish Strategic Basic Research (SBO) project Gemini, a collaboration between imec, Ghent University and Katholieke Universiteit Leuven (K.U.Leuven). Imec's MEMS technology platform, set up in imec's 200mm fab, to integrate MEMS and its readout and driving electronics on one chip, has been used to design and process the devices. The platform consists of a number of standard modules (CMOS protection layer, MEMS via and poly-SiGe electrode, anchor and poly-SiGe structural layer and a thin-film poly-SiGe packaging module) which can be processed at ~450şC above standard CMOS. Optional (optical, piezoresistive, probes…) modules can be added, depending on the functionality that is needed. This monolithic approach results in more compact systems with a reduced assembly and packaging cost and a higher performance than current hybrid systems. Companies can get access to this MEMS-technology platform through the imec CMORE service (www.imec.be/cmore).

####

About imec
Imec performs world-leading research in nanoelectronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society. Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China and Japan. Its staff of more than 1,750 people includes over 550 industrial residents and guest researchers. In 2009, imec's revenue (P&L) was 275 million euro. Further information on imec can be found at www.imec.be.

Note: Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (IMEC vzw supported by the Flemish Government), imec the Netherlands (Stichting IMEC Nederland, part of Holst Centre which is supported by the Dutch Government), imec Taiwan (IMEC Taiwan Co.) and imec China (IMEC Microelectronics (Shangai) Co. Ltd.).

For more information, please click here

Contacts:
imec: Katrien Marent, Director of External Communications, T: +32 16 28 18 80, Mobile: +32 474 30 28 66,

Barbara Kalkis, Maestro Marketing & PR, T: +1 408 996 9975, M: +1 408 529 4210,

Copyright © imec

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

MEMS

NIST illuminates transfer of nanoscale motion through microscale machine September 14th, 2016

STMicroelectronics Earns MEMS Manufacturer of the Year Award August 1st, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

New research unveils graphene 'moth eyes' to power future smart technologies: New ultra-thin, patterned graphene sheets will be essential in designing future technologies such as 'smart wallpaper' and Internet-of-things applications March 1st, 2016

Announcements

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Fighting cancer with sticky nanoparticles September 27th, 2016

Gold nanoparticles conjugated quercetin inhibits epithelial-mesenchymal transition, angiogenesis and invasiveness via EGFR/VEGFR-2 mediated pathway in breast cancer September 27th, 2016

Tools

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic