Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > How soccer ball molecules push their way under surfaces

Microscopical image of a graphene layer on a nickel substrate.
The image to the left, which was measured at an arbitrary bias
voltage of the microscope tip, shows just dark stripes. Only after
the bias voltage has spectroscopically been tuned to the very C60
molecules (right), they become visible beneath the graphene layer
as the cause of the stripe pattern.
Microscopical image of a graphene layer on a nickel substrate. The image to the left, which was measured at an arbitrary bias voltage of the microscope tip, shows just dark stripes. Only after the bias voltage has spectroscopically been tuned to the very C60 molecules (right), they become visible beneath the graphene layer as the cause of the stripe pattern.

Abstract:
HZB researchers observe atomic processes while doping semiconductor materials

How soccer ball molecules push their way under surfaces

Berlin | Posted on July 13th, 2010

Fullerene and graphene, two forms of carbon only recently discovered, have been stimulating the imaginations of researchers ever since their discovery (fullerene in 1970, graphene in 2004). With graphene especially, researchers see a chance for a new chapter in electronics, since this semiconductor material could one day replace the long-standing key element silicon. For this to happen, it would have to be possible to dope graphene - which is a single-atom layer of graphite - with foreign atoms. And in such a way that the important structural properties of graphene remain intact. In the online preprint of August issue of the journal Advanced Materials (DOI: 10.1002/adma. 201000695) researchers from Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) report on a new technique of microscopy. With it, they can show how individual fullerene molecules used for doping push their way under a graphene layer that has been previously deposited onto a nickel substrate.

Graphene is the first crystal known to be stable in two dimensions, because its carbon atoms arrange themselves into a honeycomb structure of hexagons. Fullerene has the addition of pentagons, allowing a spherical structure for which the 60-carbon-atom molecule has made its name as the soccer ball molecule.

Andrei Varykhalov and colleagues deposited a thin layer of graphene onto a nickel substrate using chemical vapour deposition starting with propylene. Next, they inserted individual fullerene molecules between the nickel surface and the graphene layer. They achieved this by rapidly heating the sample to 400 degrees Celsius, followed by brief annealing. The crucial technique that allowed them to observe the fullerene molecules as they squeezed their way in - a process called intercalation - was scanning tunnelling microscopy.

An electrically conductive stylus tip is systematically scanned over the sample surface, which is also conductive. Yet, the tip and object surface never come into contact, so no current flows at first. When the microscope tip comes to within a few tenths of a nanometre of the sample surface, however, the tunnel-ling effect kicks in. That means an exchange of electrons from the sample sur-face and tip starts to take place. If a voltage is then applied, a tunnel current flows, which responds with utmost sensitivity to the tiniest changes in distance.

The HZB researchers set up their scanning tunnelling microscopy experiment such that a clear contrast shows up as soon as the tip of the microscope per-ceives the fullerene molecules beneath the graphene surface. To obtain crucial parameters for this, they first studied the sample using synchrotron radiation at the storage ring BESSY II.

"Using our imaging technique, we can visualize intercalation compounds quite universally," Andrei Varykhalov emphasizes the importance of the experiments. In the development of new semiconductor technology, such an imaging tech-nique is indispensable for developing new components.

####

About Helmholtz-Zentrum Berlin
The Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) operates and develops large scale facilities for research with photons (synchrotron beams) and neutrons. The experimental facilities, some of which are unique, are used annually by more than 2,500 guest researchers from universities and other research organisations worldwide. Above all, HZB is known for the unique sam-ple environments that can be created (high magnetic fields, low temperatures). HZB conducts materials research on themes that espe-cially benefit from and are suited to large scale facilities. Research topics include magnetic materials and functional materials.

In the research focus area of solar energy, the development of thin film solar cells is a priority, whilst chemical fuels from sunlight are also a vital research theme. HZB has approx.1,100 employees of whom some 800 work on the Lise-Meitner Campus in Wannsee and 300 on the Wilhelm-Conrad-Röntgen Campus in Adlershof.

HZB is a member of the Helmholtz Association of German Research Centres, the largest scientific organisation in Germany.

For more information, please click here

Contacts:
Dr. Andrei Varykhalov
(030) 8062-14888

Priv.-Doz. Dr. Oliver Rader
(030) 8062-12950

Press Office
Dr. Ina Helms
(030) 8062-42034

Copyright © Helmholtz-Zentrum Berlin

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Chemistry

Chains of nanogold – forged with atomic precision September 23rd, 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Researchers build world's largest database of crystal surfaces and shapes September 14th, 2016

On-surface chemistry leads to novel products: On-surface chemical Reactions can lead to novel chemical compounds not yet synthesized by solution chemistry. September 13th, 2016

Thin films

Continuous roll-process technology for transferring and packaging flexible LSI August 29th, 2016

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Cambridge Advanced Imaging Centre praises support film consistency and quality from EM Resolutions July 5th, 2016

Possible Futures

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Crystalline Fault Lines Provide Pathway for Solar Cell Current: New tomographic AFM imaging technique reveals that microstructural defects, generally thought to be detrimental, actually improve conductivity in cadmium telluride solar cells September 26th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Chains of nanogold – forged with atomic precision September 23rd, 2016

Academic/Education

PHENOMEN is a FET-Open Research Project aiming to lay the foundations a new information technology September 19th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Chip Technology

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Researchers at the Catalan Institute of Nanoscience and Nanotechnology show that bending semiconductors generates electricity September 26th, 2016

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

Towards Stable Propagation of Light in Nano-Photonic Fibers September 20th, 2016

Nanotubes/Buckyballs/Fullerenes

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

World's most powerful X-ray takes a 'sledgehammer' to molecules September 14th, 2016

Researchers design solids that control heat with spinning superatoms: Carnegie Mellon University and Columbia University collaborators discover the cause of vastly different thermal conductivities in superatomic structural analogues September 8th, 2016

For first time, carbon nanotube transistors outperform silicon September 8th, 2016

Nanoelectronics

Mexican scientist in the Netherlands seeks to achieve data transmission ... speed of light September 20th, 2016

GLOBALFOUNDRIES to Deliver Industry’s Leading-Performance Offering of 7nm FinFET Technology: Company extends its leading-edge roadmap for products demanding the ultimate processing power September 15th, 2016

Semiconducting inorganic double helix: New flexible semiconductor for electronics, solar technology and photo catalysis September 15th, 2016

A versatile method to pattern functionalized nanowires: A team of researchers from Hokkaido University has developed a versatile method to pattern the structure of 'nanowires,' providing a new tool for the development of novel nanodevices September 9th, 2016

Announcements

Nanosensors could help determine tumors’ ability to remodel tissue: Measuring enzyme levels could help doctors select appropriate treatments September 29th, 2016

Innovation in Nanotechnology is Focus of Symposium: Annual event brings international experts to Northwestern Oct. 6 September 29th, 2016

Cambrios at CEATEC - Japan 2016 September 29th, 2016

Picosun patents ALD nanolaminate to prevent electronics from overheating September 28th, 2016

Tools

Oxford Instruments systems now facilitate water purification technology September 27th, 2016

Dr Barbara Armbruster promoted to Worldwide Sales and Marketing Director for XEI Scientific September 27th, 2016

Oxford Instruments is ‘Bringing the Nanoworld Together’ in India once again - 22 - 23 November 2016 | IISc Bangalore September 21st, 2016

Bruker Introduces Complete Commercial AFM-Based SECM Solution: PeakForce SECM Mode Enables Previously Unobtainable Electrochemical Information September 20th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic