Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > SolRayo Begins Work on STTR Program Grant

Abstract:
Enable IPC's SolRayo Begins Work on STTR Program Grant From the National Science Foundation (NSF) SBIR/STTR Program

SolRayo Begins Work on STTR Program Grant

Madison, WI | Posted on July 13th, 2010

Enable IPC Corporation (Pinksheets: EIPC) announced today that its subsidiary, SolRayo, has commenced work on its recently awarded STTR grant from the National Science Foundation (NSF) SBIR/STTR Program. The work will continue through June 30, 2011 and is being performed under the guidance of SolRayo's Director of Battery R&D, Dr. Walter Zeltner and in collaboration with the University of Wisconsin. SolRayo is developing new nanoparticle-based materials for commercial use in various renewable energy, industrial, consumer and automotive applications. The objective of the awarded grant is to address an issue concerning the degradation of performance of certain lithium batteries, particularly in high temperature applications.

SolRayo CEO Dr. Mark Daugherty said, "Our research into this technology suggests that battery life can be significantly expanded by using a simple, inexpensive nanoparticle coating process we have been developing. This could mean a large market opportunity for us in a number of areas, most particularly in military, remote power and transportation applications."

Kevin Leonard, Chief Technology Officer at SolRayo, commented, "Our initial research shows that our process inhibits the degradation of battery cathode materials, especially at higher operating temperatures. This means that a battery's life could be extended significantly by applying an inexpensive, nano-based coating to one of the battery's key components."

Disclaimer

SolRayo's research results are based upon work supported by the National Science Foundation Small Business Technology Transfer (STTR) Program under Proposal/Grant No. 1010409. Any opinions, findings, and conclusions or recommendations expressed in this press release are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Forward-Looking Statements

This release may contain forward-looking statements, such as "could," "suggests" and similar terminology that are made pursuant to the safe harbor provisions of the Private Securities Reform Act of 1995. Forward-looking statements involve known and unknown risks and uncertainties, which may cause a company's actual results in the future to differ materially from forecasted results. These risks and uncertainties include, among other things, the ability to secure additional financing for the company, changing economic conditions, business conditions, and the risks inherent in the operations of a company.

####

About SolRayo
SolRayo, Inc. (http://www.solrayo.com) is a Madison, Wisconsin-based company focused on developing new nanoparticle based materials for use in various renewable energy, industrial, consumer, and automotive applications. The Company is currently working to commercialize an ultracapacitor technology licensed from the University of Wisconsin. In addition to its materials research and development work, the Company introduced its potentiostat/galvanostat equipment products in January 2010. SolRayo is a subsidiary of Enable IPC Corporation.

For more information, please click here

Contacts:
Rich Kaiser
(888) 391-1196, ext. 106
or (800) 631-8127

Copyright © Enable IPC Corporation

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Superfast light source made from artificial atom April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Govt.-Legislation/Regulation/Funding/Policy

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Possible Futures

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Superfast light source made from artificial atom April 28th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Materials/Metamaterials

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

University of Illinois researchers create 1-step graphene patterning method April 27th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Announcements

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Superfast light source made from artificial atom April 28th, 2016

Arrowhead Pharmaceuticals Files for Regulatory Clearance to Begin Phase 1/2 Study of ARC-521 April 28th, 2016

The Translational Research Center at the University Hospital of Erlangen in Germany uses the ZetaView from Particle Metrix to quantify extracellular vesicles such as exosomes April 28th, 2016

Energy

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Adding some salt to the recipe for energy storage materials: Researchers use common table salt as growth template April 22nd, 2016

Cleaning up hybrid battery electrodes improves capacity and lifespan: New way of building supercapacitor-battery electrodes eliminates interference from inactive components April 22nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic