Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Organic nanowires open up possibilities

Abstract:
Swiss and German materials scientists have created simple networks of organic nanowires for future electronic and optoelectronic components.

Organic nanowires open up possibilities

EU | Posted on July 12th, 2010

The successful approach synthesises the complex and incredibly thin nanowire structures, and joins them to electrically conducting links (essentially creating an electronic circuit). The result is a culmination of work that began in 2006 under the PHODYE ('New photonic systems on a chip based on dyes for sensor applications scalable at wafer fabrication') project, which was funded EUR 1.92 million under the 'Information society technologies' (IST) Thematic area of the EU's Sixth Framework Programme (FP6).

The PHODYE project was initiated by Dr Angel Barranco from the Instituto de Ciencia de Materiales de Sevilla in Spain, who invited his former colleagues from the Swiss Federal Laboratories for Materials Testing and Research (Empa) to become involved. Empa is one of eight academic and industrial partners from four European countries (Belgium, Spain, Sweden and Switzerland) currently working on the project.

The aim is to develop a new family of sensor devices that combines dye sensor films and photonic structures. These incredibly sensitive gas sensors (made up of thin films that change colour and fluoresce on contact with certain gas molecules) could eventually be used to monitor vehicle emissions or to provide warnings of the presence of poisonous substances.

It was during their work on PHODYE that Empa's Ana Borras, Oliver Gröning and Pierangelo Gröning, and Jürgen Köble from Omicron Nanotechnology in Germany created the unique methodology for connecting organic nanowires. The result is a step towards the manufacture of cheaper and more flexible sensors, transistors, diodes, and other components, ranging from the micro all the way to the nano scale.

The physicists developed a new vacuum deposition process for synthesising organic nanowires and discovered how to manufacture nanowires with largely varying characteristics by appropriately selecting the starting molecule and the experimental conditions. Their method is particularly unusual and surprising because it has generated a perfectly monocrystalline structure by precisely controlling the substrate temperature, molecule flow and substrate treatment.

The team soon discovered that the new process was not only able to provide nanowires for the gas sensors needed under PHODYE, but it opened the door to creating complex 'nanowire electric circuits' for electronic and optoelectronic applications (e.g. solar cells).

The reason being that the range of nanowires can be used together (as required) to form networks with broadly varying properties. The secret to this lies in having decorated (using a sputter-coating process) the nanowires growing on the surface with silver nanoparticles. Thanks to these particles, more nanowires can be grown that are in electrical contact with the original wires - the foundation of an electrical circuit on the nanoscale.

Dr Gröning explained that the potential exists for being able to manufacture organic semiconductor materials, which are very attractive candidates for the manufacture of inexpensive, large area and flexible electronic components.

The team has presented the results of their finding in the journal Advanced Materials. The PHODYE project formally concludes in October 2010.

For more information, please visit:

Swiss Federal Laboratories for Materials Testing and Research (Empa):
www.empa.ch/plugin/template/empa/3/*/---/l=2

PHODYE www.phodye.icmse.csic.es/

Advanced Materials www3.interscience.wiley.com/journal/10008336/home

####

For more information, please click here

Copyright © CORDIS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Thin films

Self-cleaning, anti-reflective, microorganism-resistant coatings: Researchers at the UPV/EHU-University of the Basque Country are modifying surface properties of materials to obtain specific properties at a lower cost August 9th, 2016

Scientists find a way of acquiring graphene-like films from salts to boost nanoelectronics: Physicists use supercomputers to find a way of making 'imitation graphene' from salt July 30th, 2016

Cambridge Advanced Imaging Centre praises support film consistency and quality from EM Resolutions July 5th, 2016

New nanomaterial offers promise in bendable, wearable electronic devices: Electroplated polymer makes transparent, highly conductive, ultrathin film June 13th, 2016

Possible Futures

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Academic/Education

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

Sensors

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

'Sniffer plasmons' could detect explosives: Scientists have proposed a graphene-based spaser that can detect even small amounts of various substances, including explosives August 16th, 2016

Perpetual 'ice water': Stable solid-liquid state revealed in nanoparticles: Gallium nanoparticles that are both solid and liquid are stable over a range of 1000 degrees Fahrenheit August 5th, 2016

Nanoelectronics

Light and matter merge in quantum coupling: Rice University physicists probe photon-electron interactions in vacuum cavity experiments August 24th, 2016

New microchip demonstrates efficiency and scalable design: Increased power and slashed energy consumption for data centers August 24th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Announcements

A nanoscale wireless communication system via plasmonic antennas: Greater control affords 'in-plane' transmission of waves at or near visible light August 27th, 2016

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Photonics/Optics/Lasers

Silicon nanoparticles trained to juggle light: Research findings prove the capabilities of silicon nanoparticles for flexible data processing in optical communication systems August 25th, 2016

AIM Photonics Announces Release of Process Design Kit (PDK) for Integrated Silicon Photonics Design August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

Research partnerships

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

A new way to display the 3-D structure of molecules: Metal-organic frameworks provide a new platform for solving the structure of hard-to-study samples August 21st, 2016

Researchers watch catalysts at work August 19th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic