Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > CEA-Leti’s New Imaging System for fDOT Ready for Commercialization, Use in Measuring and Treating Cancer

Abstract:
Imaging System for Fluorescence Diffuse Optical Tomography Validated by Researchers at Five French Sites

CEA-Leti’s New Imaging System for fDOT Ready for Commercialization, Use in Measuring and Treating Cancer

Grenoble, France | Posted on July 9th, 2010

CEA-Leti today announced that after extensive beta testing at five French research facilities, its new imaging system for near-infrared fluorescence-enhanced diffuse optical tomography (fDOT) is ready for commercial applications.

fDOT systems help researchers quantify cancer activity and evaluate treatment efficiency. They provide quantitative functional measurements for the pharmacological industry in experiments on small animals, typically mice. After target-specific fluorescent molecular probes are injected into the mice, the probes' distribution in the tissue is reconstructed, enabling both 3D localization of the targeted areas and quantization of the local concentration of the fluorescent dye.

But fDOT existing systems are currently limited by the extent of tissue heterogeneity and the complex surface shape of the animals.

CEA-Leti's new fDOT imaging system enables reconstruction of the fluorescence yield even in heterogeneous and highly attenuating body regions such as the lungs, and it doesn't require immersing the mice in optical index-matching liquid.

After being injected with a cancer-specific fluorescent marker, the mice are scanned with near-infrared light over the area of interest. The system records outgoing transmitted and emitted fluorescent lights and reconstructs the 3D fluorescence map to infer cancer localization and activity. For in vivo experiments on small animals, the reconstruction method takes into account heterogeneous optical properties of the biological tissues and complex-shape-object geometries.

Research teams at five French beta-sites, including the Albert Bonniot Institute (IAB) in Grenoble, and Service Hospitalier Frédéric Joliot (SHJF) in Orsay near Paris, have validated CEA-Leti's fDOT systems in studies on more than 1 000 mice.

"This level of maturity in a new technology, which has been validated by five beta sites, demonstrates that our fDOT imaging system is ready for commercialization," said CEA-Leti CEO Laurent Malier. "These studies have shown high quality reconstruction results, particularly in terms of sensitivity, linearity and spatial resolution, all of which compare favorably to the top commercially available fDOT systems. We invite industrial partners to discuss ways to commercialize this system, including transfer of the technology, know-how and IP."

####

About CEA-Leti
CEA is a French research and technology public organisation, with activities in four main areas: energy, information technologies, healthcare technologies and defence and security. Within CEA, the Laboratory for Electronics & Information Technology (CEA-Leti) works with companies in order to increase their competitiveness through technological innovation and transfers. CEA-Leti is focused on micro and nanotechnologies and their applications, from wireless devices and systems, to biology and healthcare or photonics. Nanoelectronics and microsystems (MEMS) are at the core of its activities. As a major player in MINATEC excellence centre, CEA-Leti operates 8,000-m˛ state-of-the-art clean rooms, on 24/7 mode, on 200mm and 300mm wafer standards. With 1,200 employees, CEA-Leti trains more than 150 Ph.D. students and hosts 200 assignees from partner companies. Strongly committed to the creation of value for the industry, CEA-Leti puts a strong emphasis on intellectual property and owns more than 1,400 patent families. In 2008, contractual income covered more than 75 % of its budget worth 205 M€.

For more information, please click here

Contacts:
Technical Contact:
Jean-Louis AMANS
Program manager, imaging systems, CEA-Leti
+33 4 38 78 31 53


CEA-Leti
Thierry Bosc
+33 4 38 78 31 95


Agency
Amélie Ravier
+33 1 58 18 59 30

Copyright © CEA-Leti

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Nanomedicine

Stretching the limits on conducting wires July 25th, 2015

UT Dallas nanotechnology research leads to super-elastic conducting fibers July 24th, 2015

Nanopaper as an optical sensing platform July 23rd, 2015

Albany College of Pharmacy and Health Sciences to Host One Week Symposium on Nanomedicine July 23rd, 2015

Announcements

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Controlling phase changes in solids: Controlling phase changes in solids July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

'Seeing' molecular interactions could give boost to organic electronics July 28th, 2015

Tools

Nanometrics Announces Upcoming Investor Events July 28th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Ultra-thin hollow nanocages could reduce platinum use in fuel cell electrodes July 24th, 2015

Nanobiotechnology

New computer model could explain how simple molecules took first step toward life: Two Brookhaven researchers developed theoretical model to explain the origins of self-replicating molecules July 28th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Programming adult stem cells to treat muscular dystrophy and more by mimicking nature July 22nd, 2015

Biophotonics - Global Strategic Business Report 2015 July 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project