Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Secret Revealed

Abstract:
The crystal structure of ribose—finally!

Secret Revealed

Weinheim, Germany | Posted on July 8th, 2010

D-Ribose is just a small molecule - but an extremely important one for us life forms. It is astounding that the crystal structure of ribose is not included among the over 500,000 structures that have been solved. After all, ribose is a fundamental building block of ribosomes, the "protein factories" of cells. A Nobel Prize was awarded in 2009 for studies of the structure and function of ribosomes. In the journal Angewandte Chemie, the winners of this prize have just presented a first-hand report of their research. Also in Angewandte Chemie, a team of German and Swiss-based researchers has now presented another long-sought result: they have finally been able to solve the crystal structure of ribose.

Ribose belongs in the chemical class of sugars. Its backbone is a chain of five carbon atoms; four of them carry an OH group, the fifth an oxygen atom attached by a double bond. In most modern textbooks and handbooks, ribose is represented as a â-furanose: four of the carbon atoms and the oxygen atom form a five-membered ring. However, it has been known for over 40 years that in solution, ribose exists as a mixure of four different structures: á- and â-furanoses as well as á- and the dominant â-pyranose. Pyranoses are a form of sugar in which the five carbon atoms and an oxygen atom form a six-membered ring. The prefix á or â indicates whether a specific OH group lies above or below the plane of the ring.

But what form does crystalline ribose adopt? Whereas the structures of other important sugars have been known for a long time, ribose has been reluctant to reveal its secret; the compound is extremely difficult to crystallize. Despite such adverse conditions and countless failed attempts, the team led by Lynne B. McCusker, Beat H Meier, Roland Boese, and Jack D. Dunitz at the ETH Zurich (Switzerland) and the University of Duisburg-Essen have finally succeeded in cracking the structure. By using complex computer calculations, they were first able to obtain meaningful results from X-ray diffraction analyses of powder samples. They were then also able to produce single crystals by zone-melting recrystallization. In this technique, only a small zone of the material is heated and this melt zone is moved. The cooling melt then solidifies with a uniform crystal structure to form the desired single crystal. This can then be examined in by X-ray crystal-structure analysis. Solid-state NMR spectroscopic studies yielded further, complementary information about ribose.

Overall, the researchers came to the realization that D-ribose molecules crystallize as pyranoses, which are six-membered rings. These are present in two crystalline forms that contain â- and á-pyranose in various proportions.

Author: Jack D. Dunitz, Swiss Federal Institute of Technology (ETH) Zurich (Switzerland), www.loc.ethz.ch/people/emerit/dunitz

Title: The Crystal Structure of D-Ribose—At Last!

Angewandte Chemie International Edition 2000, 39, No. 26, 4503-4505, Permalink to the article: dx.doi.org/10.1002/anie.201001266

####

For more information, please click here

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Chemistry

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Researchers combine disciplines, computational programs to determine atomic structure August 26th, 2015

Laser-burned graphene gains metallic powers: Rice University scientists find possible replacement for platinum as catalyst August 20th, 2015

Academic/Education

Announcing Oxford Instruments and School of Physics signing a Memorandum of Understanding August 26th, 2015

Kwansei Gakuin University in Hyogo, Japan, uses Raman microscopy to study crystallographic defects in silicon carbide wafers August 25th, 2015

JPK reports on the use of a NanoWizard® AFM-SECM system at the Université Paris Diderot looking at nanoscale biostructures August 18th, 2015

Rice, Penn State open center for 2-D coatings: National Science Foundation selects universities to develop atom-thin materials with industry partners August 13th, 2015

Discoveries

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

Using ultrathin sheets to discover new class of wrapped shapes: UMass Amherst materials researchers describe a new regime of wrapped shapes August 31st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

Announcements

Nanotech could rid cattle of ticks, with less collateral damage September 1st, 2015

Scientists 'squeeze' light one particle at a time: A team of scientists have measured a bizarre effect in quantum physics, in which individual particles of light are said to have been 'squeezed' -- an achievement which at least one textbook had written off as hopeless September 1st, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

New material science research may advance tech tools August 31st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic