Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Secret Revealed

Abstract:
The crystal structure of riboseófinally!

Secret Revealed

Weinheim, Germany | Posted on July 8th, 2010

D-Ribose is just a small molecule - but an extremely important one for us life forms. It is astounding that the crystal structure of ribose is not included among the over 500,000 structures that have been solved. After all, ribose is a fundamental building block of ribosomes, the "protein factories" of cells. A Nobel Prize was awarded in 2009 for studies of the structure and function of ribosomes. In the journal Angewandte Chemie, the winners of this prize have just presented a first-hand report of their research. Also in Angewandte Chemie, a team of German and Swiss-based researchers has now presented another long-sought result: they have finally been able to solve the crystal structure of ribose.

Ribose belongs in the chemical class of sugars. Its backbone is a chain of five carbon atoms; four of them carry an OH group, the fifth an oxygen atom attached by a double bond. In most modern textbooks and handbooks, ribose is represented as a ‚-furanose: four of the carbon atoms and the oxygen atom form a five-membered ring. However, it has been known for over 40 years that in solution, ribose exists as a mixure of four different structures: Š- and ‚-furanoses as well as Š- and the dominant ‚-pyranose. Pyranoses are a form of sugar in which the five carbon atoms and an oxygen atom form a six-membered ring. The prefix Š or ‚ indicates whether a specific OH group lies above or below the plane of the ring.

But what form does crystalline ribose adopt? Whereas the structures of other important sugars have been known for a long time, ribose has been reluctant to reveal its secret; the compound is extremely difficult to crystallize. Despite such adverse conditions and countless failed attempts, the team led by Lynne B. McCusker, Beat H Meier, Roland Boese, and Jack D. Dunitz at the ETH Zurich (Switzerland) and the University of Duisburg-Essen have finally succeeded in cracking the structure. By using complex computer calculations, they were first able to obtain meaningful results from X-ray diffraction analyses of powder samples. They were then also able to produce single crystals by zone-melting recrystallization. In this technique, only a small zone of the material is heated and this melt zone is moved. The cooling melt then solidifies with a uniform crystal structure to form the desired single crystal. This can then be examined in by X-ray crystal-structure analysis. Solid-state NMR spectroscopic studies yielded further, complementary information about ribose.

Overall, the researchers came to the realization that D-ribose molecules crystallize as pyranoses, which are six-membered rings. These are present in two crystalline forms that contain ‚- and Š-pyranose in various proportions.

Author: Jack D. Dunitz, Swiss Federal Institute of Technology (ETH) Zurich (Switzerland), www.loc.ethz.ch/people/emerit/dunitz

Title: The Crystal Structure of D-RiboseóAt Last!

Angewandte Chemie International Edition 2000, 39, No. 26, 4503-4505, Permalink to the article: dx.doi.org/10.1002/anie.201001266

####

For more information, please click here

Copyright © Angewandte Chemie

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Chemistry

Dendritic fibrous nanosilica: all-in-one nanomaterial for energy, environment and health November 4th, 2017

Researchers greenlight gas detection at room temperature October 26th, 2017

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

What can be discovered at the junction of physics and chemistry October 6th, 2017

Academic/Education

LuleŚ University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Park Systems Announces the Grand Opening of the Park NanoScience Center at SUNY Polytechnic Institute November 3rd, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Discoveries

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Announcements

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project