Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > With Magnetic Nanoparticles, Scientists Remotely Control Neurons and Animal Behavior

Research on magnetic nanoparticles by UB doctoral student Heng Huang (right) and UB physics professor Arnd Pralle could lead to disease treatments that remotely manipulate proteins or cells.
Research on magnetic nanoparticles by UB doctoral student Heng Huang (right) and UB physics professor Arnd Pralle could lead to disease treatments that remotely manipulate proteins or cells.

Abstract:
Research could lead to remote stimulation of cells to treat cancer or diabetes

With Magnetic Nanoparticles, Scientists Remotely Control Neurons and Animal Behavior

Buffalo, NY | Posted on July 8th, 2010

Clusters of heated, magnetic nanoparticles targeted to cell membranes can remotely control ion channels, neurons and even animal behavior, according to a paper published by University at Buffalo physicists in Nature Nanotechnology.

The research could have broad application, potentially resulting in innovative cancer treatments that remotely manipulate selected proteins or cells in specific tissues, or improved diabetes therapies that remotely stimulate pancreatic cells to release insulin.

The work also could be applied to the development of new therapies for some neurological disorders, which result from insufficient neuro-stimulation.

"By developing a method that allows us to use magnetic fields to stimulate cells both in vitro and in vivo, this research will help us unravel the signaling networks that control animal behavior," says Arnd Pralle, PhD, assistant professor of physics in the UB College of Arts and Sciences and senior/corresponding author on the paper.

The UB researchers demonstrated that their method could open calcium ion channels, activate neurons in cell culture and even manipulate the movements of the tiny nematode, C. elegans.

"We targeted the nanoparticles near what is the 'mouth' of the worms, called the amphid," explains Pralle. "You can see in the video that the worms are crawling around; once we turn on the magnetic field, which heats up the nanoparticles to 34 degrees Celsius, most of the worms reverse course. We could use this method to make them go back and forth. Now we need to find out which other behaviors can be controlled this way." [The video is below.]

The worms reversed course once their temperature reached 34 degrees Celsius, Pralle says, the same threshold that in nature provokes an avoidance response. That's evidence, he says, that the approach could be adapted to whole-animal studies on innovative new pharmaceuticals.

The method the UB team developed involves heating nanoparticles in a cell membrane by exposing them to a radiofrequency magnetic field; the heat then results in stimulating the cell.

"We have developed a tool to heat nanoparticles and then measure their temperature," says Pralle, noting that not much is known about heat conduction in tissue at the nanoscale.

"Our method is important because it allows us to only heat up the cell membrane. We didn't want to kill the cell," he said. "While the membrane outside the cell heats up, there is no temperature change in the cell."

Measuring just six nanometers, the particles can easily diffuse between cells. The magnetic field is comparable to what is employed in magnetic resonance imaging. And the method's ability to activate cells uniformly across a large area indicates that it also will be feasible to use it in in vivo whole body applications, the scientists report.

In the same paper, the UB scientists also report their development of a fluorescent probe to measure that the nanoparticles were heated to 34 degrees Celsius.

"The fluorescence intensity indicates the change in temperature," says Pralle, "it's kind of a nanoscale thermometer and could allow scientists to more easily measure temperature changes at the nanoscale."

Pralle and his co-authors are active in the Molecular Recognition in Biological Systems and Bioinformatics and the Integrated Nanostructure Systems strategic strengths, identified by the UB 2020 strategic planning process.

In addition to Pralle, who has an adjunct position in the Department of Physiology and Biophysics in UB's School of Medicine and Biomedical Sciences, co-authors are Heng Huang and Savas Delikanli, both doctoral students in the UB Department of Physics, Hao Zeng, PhD, associate professor in the physics department, and Denise M. Ferkey, PhD, assistant professor in the UB Department of Biological Sciences.

The research was supported by the National Science Foundation and the UB 2020 Interdisciplinary Research Development Fund.

Watch video at www.youtube.com/watch?v=u9MqrLcLaCk

####

About University at Buffalo
The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

For more information, please click here

Contacts:
Ellen Goldbaum

716-645-4605

Copyright © University at Buffalo

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Govt.-Legislation/Regulation/Funding/Policy

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Possible Futures

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Academic/Education

Rice University launches Rice Synthetic Biology Institute to improve lives January 12th, 2024

Multi-institution, $4.6 million NSF grant to fund nanotechnology training September 9th, 2022

National Space Society Helps Fund Expanding Frontier’s Brownsville Summer Entrepreneur Academy: National Space Society and Club for the Future to Support Youth Development Program in South Texas June 24th, 2022

How a physicist aims to reduce the noise in quantum computing: NAU assistant professor Ryan Behunin received an NSF CAREER grant to study how to reduce the noise produced in the process of quantum computing, which will make it better and more practical April 1st, 2022

Nanomedicine

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Nanobiotechnology

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Good as gold - improving infectious disease testing with gold nanoparticles April 5th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project