Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Study measures single-molecule machines in action

Rotaxane, showing movement of ring to different stations along the rod.
Rotaxane, showing movement of ring to different stations along the rod.

Abstract:
In the development of future molecular devices, new display technologies, and "artificial muscles" in nanoelectromechanical devices, functional molecules are likely to play a primary role.

By Mike Rodewald

Study measures single-molecule machines in action

Los Angeles, CA | Posted on July 8th, 2010

Rotaxanes, one family of such molecules, are tiny, mechanically interlocked structures that consist of a dumbell-shaped molecule whose rod section is encircled by a ring. These structures behave as molecular "machines," with the ring moving along the rod from one station to another when stimulated by a chemical reaction, light or acidity.

To realize the potential of these molecular machines, however, it is necessary to understand and to measure their function at the nanoscale. Previous methods for observing their operation have involved chemical measurements in solution and studying collections of them attached to surfaces, but neither has provided an accurate picture of their function in environments that are relevant to molecular-device operation.

Now, a multidisciplinary team of researchers from UCLA, Northwestern University, UC Merced, Pennsylvania State University and Japan has succeeded in observing single-molecule interactions of bistable rotaxanes functioning in their native environment.

The team's findings are published in the current edition of the journal ACS Nano.

Led by Paul Weiss from UCLA and Fraser Stoddart from Northwestern University, the team developed a molecular design that firmly attached rotaxanes to a surface, enabling them to be individually examined in their native environment by a scanning tunneling microscope (STM). Using this technology, the researchers were able to record station changes by the rotaxanes' rings along their rods in response to electrochemical signals.

Previously, rotaxanes had to be grouped for study because of their mobility and flexibility when attached to surfaces. And because STM instruments utilize an atomically thin tip to feel out nanoscale surfaces ¯ in much the same way a blind person reads Braille ¯ the rotaxanes' flexible nature made it difficult to study them individually. The research team's molecular design, however, helped significantly reduce this flexibility.

The STM developed by the team enables much more detailed studies of molecular machines, leading to greater understanding of how they interact with their neighbors and how they might work together in nanoelectromechanical devices.

Paul Weiss, distinguished professor of chemistry and biochemistry, holds UCLA's Fred Kavli Chair in Nanosystems Sciences and is director of the California NanoSystems Institute (CNSI) at UCLA. Fraser Stoddart is the Board of Trustees Professor of Chemistry and director of the Center for the Chemistry of Integrated Systems (CCIS) at Northwestern University.

The work was funded by the National Science Foundation, the Semiconductor Research Corporation and the Kavli Foundation.

####

About California NanoSystems Institute at UCLA
The California NanoSystems Institute at UCLA is an integrated research center operating jointly at UCLA and UC Santa Barbara whose mission is to foster interdisciplinary collaborations for discoveries in nanosystems and nanotechnology; train the next generation of scientists, educators and technology leaders; and facilitate partnerships with industry, fueling economic development and the social well-being of California, the United States and the world. The CNSI was established in 2000 with $100 million from the state of California and an additional $250 million in federal research grants and industry funding. At the institute, scientists in the areas of biology, chemistry, biochemistry, physics, mathematics, computational science and engineering are measuring, modifying and manipulating the building blocks of our world — atoms and molecules. These scientists benefit from an integrated laboratory culture enabling them to conduct dynamic research at the nanoscale, leading to significant breakthroughs in the areas of health, energy, the environment and information technology.

For more information, please click here

Contacts:
Media Contacts
Jennifer Marcus
310-267-4839


Mike Rodewald
310-267-5883

Copyright © California NanoSystems Institute at UCLA

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

TCL Unveils First 65” TV Featuring QD Vision’s Color IQ™ Quantum Dot Technology: Emerging industry leader introduces expanded quantum dot TV lineup May 30th, 2015

Nanotech Secures Additional Patents in Advanced Security Features: New patented features gain attention from the banknote industry May 30th, 2015

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

NEMS

Weighing -- and imaging -- molecules one at a time April 28th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Iranian Scientists Evaluate Dynamic Interaction between 2 Carbon Nanotubes April 14th, 2015

Govt.-Legislation/Regulation/Funding/Policy

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Physicists precisely measure interaction between atoms and carbon surfaces May 28th, 2015

Linking superconductivity and structure May 28th, 2015

Chemists discover key reaction mechanism behind the highly touted sodium-oxygen battery May 28th, 2015

Possible Futures

Global Carbon Nanotubes (CNT) Market Expected To Reach USD 3.42 Billion By 2022 May 29th, 2015

Global Nano-Enabled Packaging Market For Food and Beverages Will Reach $15.0 billion in 2020 May 26th, 2015

Simulations predict flat liquid May 21st, 2015

Nature inspires first artificial molecular pump: Simple design mimics pumping mechanism of life-sustaining proteins found in living cells May 19th, 2015

Academic/Education

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

New JEOL E-Beam Lithography System to Enhance Quantum NanoFab Capabilities May 6th, 2015

FEI Partners With the George Washington University to Equip New Science & Engineering Hall: Suite of new high-performance microscopes will be used for cutting-edge experiments at GW’s new research facility April 29th, 2015

Renishaw Raman systems used to study 2D materials at Boston University, Massachusetts, USA. April 28th, 2015

Molecular Machines

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

UCLA nanoscientists are first to model atomic structures of three bacterial nanomachines: Cryo electron microscope enables scientists to explore the frontiers of targeted antibiotics April 21st, 2015

Advances in molecular electronics: Lights on -- molecule on: Researchers from Dresden and Konstanz succeed in light-controlled molecule switching April 20th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Announcements

TCL Unveils First 65” TV Featuring QD Vision’s Color IQ™ Quantum Dot Technology: Emerging industry leader introduces expanded quantum dot TV lineup May 30th, 2015

Nanotech Secures Additional Patents in Advanced Security Features: New patented features gain attention from the banknote industry May 30th, 2015

New 'designer carbon' from Stanford boosts battery performance May 30th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Tools

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Research partnerships

Linking superconductivity and structure May 28th, 2015

How spacetime is built by quantum entanglement: New insight into unification of general relativity and quantum mechanics May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project