Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

android tablet pc

Home > Press > Project Success Stories - Congratulations, it's a quantum computer

Quantum physics is entering the computer age thanks to the work of a dedicated band of European researchers.

Project Success Stories - Congratulations, it's a quantum computer

EU | Posted on July 7th, 2010

It is not that simple of course. While microelectronic chips have continued to shrink in size, research into quantum computing - in which the active components often can be measured at the molecular level - is still in its infancy.

'This might provide breakthroughs in high-performance computing in 10 to 20 years,' says Göran Wendin, professor of theoretical physics at the Bionaro System Laboratory at Chalmers University in Gothenburg, Sweden. 'But most likely, it will provide a paradigm shift; looking back in 20 years, we will see how technology changed in ways that were difficult to anticipate.'

This research has been largely focused on what are known as ion trap quantum 'computers'. Ion traps are chains of up to ten ionised atoms, each of which can be made to behave like a two-level spin-half system, called a qubit. These qubits have the power to represent significantly more information than a bit in a classical computer, and could one day be used to perform certain types of calculations that classical computers can never do. And if large-scale quantum computers can be built, they will be able to solve certain problems much faster than any current classical computers.

But before we get carried away, it is important to recognise the limitations of current research: as Prof. Wendin points out, a ten-qubit computer is to quantum computing what a 1950s computer was to the dawning digital world. And there is a further difficulty: present ion traps are not scalable. In order to develop larger systems with 50-100 qubits, solid-state nanotechnology is needed to scale down the components and build microtraps in which ions can be stored.

Scaling down solid-state systems has therefore become a focus of current research in the development of quantum computing, and it is where the EU-funded 'European superconducting quantum information processor' (Eurosqip) project comes in. This project has pioneered the development of superconducting electronic circuits by using lithographically fabricated artificial atom qubits in superconducting nano- and microscale electronic circuits. Superconducting circuits have no resistance, and over the past decade it has become evident that these devices can be used as qubits.

'Eurosqip addresses long-term issues in micro-electronics and information technology," says professor Wendin, who co-ordinated the project.

Eurosqip, a four year initiative completed in April 2010, builds on the work achieved in two previous European projects: Squbit (2000-2003) and Squbit-2 (2003-2005). Many of the partners involved in Eurosqip worked previously on these projects, setting the groundwork for avenues of research that have been further developed in the current project.

Solid-state superconducting circuits have been in development for fundamental physics research since 1985, but according to Prof. Wendin, it was the breakthrough experiment conducted by Nakamura et al. in Tsukba, Japan in 1999 that really opened the door to quantum computing research, and to the impetus behind the Eurosqip programme. By designing and implementing simple yet functional hardware platforms, Eurosqip hopes to make a significant contribution in scaling up qubit systems in practical solid-state projects.

Quantum computing certainly opens up some interesting possibilities. For example, a quantum computer has the potential to be much more efficient in integer factorisation than an ordinary computer, which is capable of only factoring large integers if they are the product of few prime numbers. A quantum computer could therefore decrypt many of the cryptographic systems in use today, with implications for electronic security. Furthermore, quantum algorithms could lead to significantly faster query searches than is possible with classical algorithms in use today.

While working with solid-state systems opens the door to new possibilities, it also presents significant challenges. One of the greatest challenges is controlling or removing what is known as quantum decoherence; any interaction with the external world causes the system to decohere, an effect that is irreversible. This means that the system needs to be as isolated as possible from its environment, but at the same time open in order to allow programming and readout of information.

Controlling decoherence is the key. It is impossible to avoid some decoherence from both communication channels and imperfections in the materials used to fabricate the qubit register. There is no way around this; the only way to go is to continue to improve materials and find better means of controlling this.

'There are no revolutionising solutions in view, just very hard work long term to control the coherent properties of solid matter and solid-state devices,' says Prof. Wendin.

Basic funding for personnel and infrastructure for Eurosqip came from national programmes and was greatly boosted by EU funding from the previous 'Quantum information processing and computing' (QIPC, 2005-2009) programme. In the current QIPC programme, Eurosqip is being followed by a new project, also coordinated by Prof. Wendin, called SOLID.

Several Eurosqip / SOLID partners have also received prestigious European Research Council grants. SOLID, which runs until 2012, aims to broaden the perspective and include other types of solid-state qubits, such as quantum dots and impurity centres in diamonds, trying to build hybrid platforms based on microwave quantum electrodynamics, and providing links to quantum optics.

Research into quantum computing may have a long way to go, but progress is being made, with Europe very much to the fore.

Eurosqip received funding under the FET-Proactive scheme of the EU's Sixth Framework Programme for research.


For more information, please click here

Copyright © CORDIS

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Sunblock poses potential hazard to sea life August 20th, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014


Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014


SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

Quantum Computing

Molecular engineers record an electron's quantum behavior August 14th, 2014

Diamonds are a Quantum Computer’s Best Friend: A new kind of quantum computer is being proposed by scientists from the TU Wien (Vienna) and Japan (National Institute of Informatics and NTT Basic Research Labs) August 8th, 2014

Diamond defect interior design: Planting imperfections called 'NV centers' at specific spots within a diamond lattice could advance quantum computing and atomic-scale measurement August 5th, 2014

Watching Schrödinger's cat die (or come to life): Steering quantum evolution & using probes to conduct continuous error correction in quantum computers July 30th, 2014


Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Graphene may be key to leap in supercapacitor performance August 20th, 2014

Newly-Developed Nanobiosensor Quickly Diagnoses Cancer August 20th, 2014

Ultrasonic Waves Applied in Production of Graphene Nanosheets August 20th, 2014

Quantum nanoscience

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

Moore quantum materials: Recipe for serendipity - Moore Foundation grant will allow Rice physicist to explore quantum materials August 12th, 2014

Measuring the Smallest Magnets July 28th, 2014

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE