Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Quantum simulations uncover hydrogen’s phase transitions

As indicated in the graphic, the gas giant planets of our solar system – Jupiter, Saturn, Uranus and Neptune – are mostly composed of hydrogen. Image courtesy of NASA
As indicated in the graphic, the gas giant planets of our solar system – Jupiter, Saturn, Uranus and Neptune – are mostly composed of hydrogen. Image courtesy of NASA

Abstract:
Hydrogen is the most abundant element in the universe and is a major component of giant planets such as Jupiter and Saturn. But not much is known about what happens to this abundant element under high-pressure conditions when it transforms from one state to another.

Quantum simulations uncover hydrogen’s phase transitions

Livermore, CA | Posted on July 7th, 2010

Using quantum simulations, scientists at the Lawrence Livermore National Laboratory, the University of Illinois at Urbana-Champaign and the University of L'Aquia in Italy were able to uncover these phase transitions in the laboratory similar to how they would occur in the centers of giant planets.

They discovered a first order phase transition, a discontinuity, in liquid hydrogen between a molecular state with low conductivity and a highly conductive atomic state. The critical point of the transition occurs at high temperatures, near 3100 degrees Fahrenheit and more than 1 million atmospheres of pressure.

"This research sheds light on the properties of this ubiquitous element and may aid in efforts to understand the formation of planets," said LLNL's Eric Schwegler.

The team used a variety of sophisticated quantum simulation approaches to examine the onset of molecular diassociation in hydrogen under high-pressure conditions. The simulations indicated there is a range of densities where the electrical conductivity of the fluid increases in a discontinuous fashion for temperatures below 3100 degrees Fahrenheit.

There is a liquid-liquid-solid multiphase coexistence point in the hydrogen phase diagram that corresponds to the intersection of the liquid-liquid phase transition, according to Miguel Morales from the University of Illinois and lead author of a paper appearing online in the Proceedings of the National Academy of Sciences for the week of June 21-25.

Other collaborators include Prof. David Ceperley from the University of Illinois at Urbana-Champaign, and Prof. Carlo Pierleoni from the University of L'Aquila. The work was funded in part by the National Nuclear Security Administration under the Stewardship Science Academic Alliances program.

####

About Lawrence Livermore National Laboratory
Founded in 1952, Lawrence Livermore National Laboratory is a national security laboratory, with a mission to ensure national security and apply science and technology to the important issues of our time. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

For more information, please click here

Contacts:
Anne M. Stark
(925) 422-9799

Copyright © Lawrence Livermore National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

NovAliX Turns to High-Resolution Cryo-Transmission Electron Microscopy for Pre-Clinical Drug Discovery Research: Thermo Fisher Scientific’s Cryo-TEM provides critical information for small molecule and biologic drug discovery February 28th, 2017

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Dream Chip Technologies Presents First 22nm FD-SOI Silicon of New Automotive Driver Assistance SoC: Advanced driver assistance system (ADAS) computer vision SoC developed for European THINGS2DO project with working first silicon fabricated on GLOBALFOUNDRIES’ 22nm FD-SOI Platfor February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Physics

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Research reveals novel quantum state in strange insulating materials February 14th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

The shape of melting in two dimensions: University of Michigan team uses Titan to explore fundamental phase transitions February 2nd, 2017

Announcements

NovAliX Turns to High-Resolution Cryo-Transmission Electron Microscopy for Pre-Clinical Drug Discovery Research: Thermo Fisher Scientific’s Cryo-TEM provides critical information for small molecule and biologic drug discovery February 28th, 2017

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Dream Chip Technologies Presents First 22nm FD-SOI Silicon of New Automotive Driver Assistance SoC: Advanced driver assistance system (ADAS) computer vision SoC developed for European THINGS2DO project with working first silicon fabricated on GLOBALFOUNDRIES’ 22nm FD-SOI Platfor February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Research partnerships

Nano 'sandwich' offers unique properties: Rice University researchers simulate two-dimensional hybrids for optoelectronics February 27th, 2017

Sandia use confined nanoparticles to improve hydrogen storage materials performance: Big changes from a small package for hydrogen storage February 25th, 2017

Molecular phenomenon discovered by advanced NMR facility: Cutting edge technology has shown a molecule self-assembling into different forms when passing between solution state to solid state, and back again - a curious phenomenon in science - says research by the University of Wa February 22nd, 2017

Graphene foam gets big and tough: Rice University's nanotube-reinforced material can be shaped, is highly conductive February 13th, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project