Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Reportlinker Adds Nanotechnology and Textiles: Market and Applications to 2015

Abstract:
Reportlinker.com announces that a new market research report is available in its catalogue:

Nanotechnology and Textiles: Market and Applications to 2015

www.reportlinker.com/p087198/Nanotechnology-and-Textiles-Market-and-Applications-to-2015.html

Reportlinker Adds Nanotechnology and Textiles: Market and Applications to 2015

New York, NY | Posted on July 6th, 2010

Stain repellent fabrics and textiles are already on the market incorporating nanomaterials, as are nanocrystalline based wound dressings and patches for delivery of anti-microbials and aromatherapeutics. Future developments of nanotechnology in textiles with have a two-fold focus:

- Upgrading the existing functions and performances of textile materials;

- Developing smart and intelligent textiles with unprecedented functions.

The latter development is more urgent from the standpoint of homeland security and advancement of technology. The new functionalities which can be expected to be developed include:

- Wearable solar cell and energy storage;

- Sensors and information acquisition and transfer;

- Multiple and sophisticated protection and detection;

- Healthcare and wound healing functions;

- Self-cleaning and repairing functions.

This study provides a comprehensive assessment of exciting opportunities for diversification for the textile industry. Properties affected by nanotechnology include: UV Protection; Hydrophilicity; Hydrophobicity, Water and Oil Repellence; Thermal Comfort; Flame Retardancy; Anti-bacterialism; Electrical Conductivity; Colouration, Abrasion Prevention and Mechanical Resistance.

1 INTRODUCTION 9

1.1 NANOSCALE TECHNOLOGIES IN TEXTILES 16

1.2 WHY NANO? 18

1.2.1 UV Protection 18

1.2.2 Hydrophilicity 20

1.2.3 Water and Oil Repellence 20

1.2.4 Thermal Comfort 21

1.2.5 Flame Retardancy 22

1.2.6 Anti-bacterialism 22

1.2.7 Anti-Static 23

1.2.8 Wrinkle resistance 23

1.2.9 Electrical Conductivity 23

1.2.10 Coloration and Abrasion Prevention 23

1.2.11 Mechanical Resistance 24

1.3 PRODUCTION TECHNIQUES 24

1.3.1 Cold plasma technology 25

1.3.2 Metal sputtering technology and metallic nanoparticles 25

1.3.3 Colloidal solutions 26

1.3.4 Sol-gel synthesis 26

1.3.5 Electrospinning 26

2 KEY NANOTECHNOLOGIES 28

2.1 NANOPARTICLES 30

2.1.1 The global market for nanoporous materials 30

2.1.2 KEY PLAYERS 33

2.1.2.1 Manufacturers and end users 33

2.1.2.2 Nanomaterials suppliers 34

2.1.2.3 Application developers 35

2.2 NANOCOMPOSITES 36

2.2.1 The global market for nanocomposites 36

2.2.2 KEY PLAYERS 40

2.2.2.1 Manufacturers and end users 40

2.2.2.2 Nanomaterials suppliers 41

2.2.2.3 Application developers 42

2.3 NANOCAPSULES 43

2.3.1 The global market for nanocapsules 43

2.3.2 KEY PLAYERS 46

2.3.2.1 Manufacturers and end users 46

2.3.2.2 Nanomaterials suppliers 47

2.3.2.3 Application developers 47

2.4 NANOPOROUS MATERIALS 49

2.4.1 The global market for nanoporous materials 49

2.4.2 KEY PLAYERS 52

2.4.2.1 Manufacturers and end users 52

2.4.2.2 Nanomaterials suppliers 53

2.4.2.3 Application developers 54

2.5 NANOFIBRES 55

2.5.1 The global market for nanofibres 55

2.5.2 KEY PLAYERS 58

2.5.2.1 Manufacturers and end users 58

2.5.2.2 Nanomaterials suppliers 59

2.5.2.3 Application developers 59

2.6 CARBON NANOTUBES 61

2.6.1 The global market for carbon nanotubes 61

2.6.2 KEY PLAYERS 64

2.6.2.1 Manufacturers and end users 64

2.6.2.2 Nanomaterials suppliers 65

2.6.2.3 Application developers 67

2.7 NANOCOATINGS 68

2.7.1 The global market for nanocoatings 68

2.7.2 KEY PLAYERS 71

2.7.2.1 Manufacturers and end users 71

2.7.2.2 Nanomaterials suppliers 71

2.7.2.3 Application developers 72

3 THE MARKET FOR NANOSCALE TECHNOLOGIES TEXTILES 74

3.1.1 Key applications and market opportunity to 2015 74

3.1.2 The global market for nanomaterials in textiles 75

3.1.2.1 Nanocoatings 76

3.1.2.2 Smart materials & sensors 77

3.1.2.3 Nanofibres/nanotubes 78

3.1.3 KEY PLAYERS 80

4 TECHNOLOGY DEVELOPERS 81

4.1 Multifunctional coatings for medical textile applications 83

4.1.1 Nano-additives for textiles treatments 84

4.1.2 Anti-microbials that can be used on textiles without impairing the water absorbency or softness of the product 84

4.1.3 Improved switch and sensor designs, textile switches and sensors, and electronic noses 85

4.1.4 Waterproof coatings for textiles 86

4.1.5 High throughput and low-cost technological solutions for functionalizing solid substrates 87

4.1.6 Nano-silver particles in natural and manmade non woven materials 87

4.1.7 Nanofibres for textiles 88

4.1.8 Nanoscale-engineered additives for fibre and fabric-based products 89

4.1.9 Bioactive wound dressing 89

4.1.10 Anti-microbial textiles based on nanosilver 90

4.1.11 Electrically conductive textiles 92

4.1.12 Anti-microbial textile coatings 92

4.1.13 Nanoparticles of bamboo charcoal 94

4.1.14 Impregnated textiles 94

4.1.15 Electrospinning of nanofibres and continuous nanofibres yarns 95

4.1.16 Finishes based on nanotechnology for spill resistance and stain repellency 95

4.1.17 Surface modification of textile materials to obtain anti-bacterial properties 96

4.1.18 Textiles with new luminescent properties 96

4.1.19 Nanofibres with anti-bacterial properties 97

4.1.20 Stain and water repellent textiles 98

4.1.21 Electrically conductive textiles 98

4.1.22 Polymer nanomaterials for electrically conductive e-textiles 99

4.1.23 Transparent nanoscale surface coating for architectural textiles, airbag coatings and protective clothing 99

4.1.24 Nano additives for textiles treatments 100

4.1.25 High performance additives and masterbatches for synthetic fibres 100

4.1.26 Nanosilver impregnated textiles 101

4.1.27 Photocatalytic textiles 101

4.1.28 Anti-microbial fibres and fabrics 101

4.1.29 Bioactive wound dressings 103

4.1.30 Anti-microbial textiles based on nanosilver 103

4.1.31 Nanoparticles of bamboo charcoal 104

4.1.32 Dry coating process for functional fabrics 105

4.1.33 Nanomaterials for surface and air space decontamination, protective textiles, air and water purification and filtration 106

4.1.34 Nanofibres for protective textiles 106

4.1.35 TiO2 coated nanosilver 107

4.1.36 Electrospinning of nanofibres and continuous nanofibre yarns 107

4.1.37 Nano silver yarns 108

4.1.38 Textiles with new luminescent properties 108

4.1.39 Stain and water repellent textiles 109

4.1.40 Enhanced colour fastness to fabric and textiles 110

4.1.41 Binders for dyestuffs or pigments 110

4.1.42 Ultra-thin polymer coatings 111

4.1.43 Highly chemical resistant polymer materials 112

4.1.44 Smart and interactive textiles 112

4.1.45 Improved switch and sensor designs, textile switches and sensors, and electronic noses 113

4.2 RESEARCH CENTRES 114

4.2.1 PP and PA6/clay nanocomposite yarns for textiles 114

4.2.2 Nanostructured self-cleaning textiles 114

4.2.3 Functional coating systems for architectural textiles and intelligent surfaces 115

4.2.4 Enzyme therapy for self-decontaminating fabric 116

4.2.5 Surface modification of textiles 117

4.2.6 Nanofibres in textiles for medicine and healthcare 118

4.2.7 Functional coatings for textiles 119

4.2.8 Carbon nanotube films and nanofibres 120

4.2.9 Nanostructured intelligent surfaces for protective clothing 122

4.2.10 Smart vests 123

4.2.11 Piezoelectric sensors for textiles 124

4.2.12 Shape memory polymers for intelligent textiles 124

4.2.13 Smart fibres and textiles based on shape memory polymers 125

4.2.14 Smart fibres and textiles 126

4.2.15 Stimuli responsive polymer coatings 126

4.2.16 Healing textiles 127

4.2.17 Functional coating systems for architectural textiles and intelligent surfaces 127

4.2.18 Smart fibres and textiles based on shape-memory polymers 128

4.2.19 Anti-bacterial functionality on clothes 129

4.2.20 Coatings for textiles, and controlled release systems 130

4.2.21 Hydrophobic and hydrophilic coatings 130

4.2.22 Super-amphipobic nanoscale functional surfaces 131

4.2.23 Electrospun nanofibres for aerosol filtration in textile structures 132

4.2.24 Dispersion of nano-sized ceramic particles in textile coatings 133

4.2.25 Nanofibres in textiles for medicine and healthcare 133

4.2.26 Self-cleaning nano TiO2 textiles 134

4.2.27 Anti-bacterial functionality on fibres and textile fabric 135

4.2.28 Hydrophobic and hydrophilic coatings 135

4.3 UNIVERSITIES 137

4.3.1 Carbon nanotubes for electronic textiles 137

4.3.2 E-Textiles for wearable sensing and actuation 137

4.3.3 Quantum tunneling nanocomposite textile soft structure sensors and actuators 138

4.3.4 Nanofibres for wearable displays 138

4.3.5 Optical nanoscale textile sensors 139

4.3.6 Micro and nanostructured fibre systems for emergency-disaster wear 139

4.3.7 Colour removal with nano titanium dioxide 142

4.3.8 Nanostructured photocatalyst to degrade the colour in textile dye effluent containing auxiliary agents 142

4.3.9 Hybrid organic-inorganic coatings for wool textiles 143

4.3.10 Non-fluorine based superhydrophobicity for wool textile through nanoscale surface roughness modification 143

4.3.11 Engineered spider silk 144

4.3.12 Synthesis and investigation of highly photo stable fluorescent dyes and linking such structures to macromolecules 145

4.3.13 Electrospun magnetic nanofibres with anti-counterfeiting applications for clothing 145

4.3.14 Ultra-hydrophobic fibres 146

4.3.15 Carbon nanotube yarns 147

4.3.16 Anti-microbial polymer coating of fabrics 147

4.3.17 Cyclodextrin additives to improve/enhance the properties of textile products 148

4.3.18 Electrospinning and polymer nanofibres 148

4.3.19 Nanofibres for aerospace, automotive, biomedical and orthopedic devices, textiles, ceramics, polymers, and advanced composites 149

4.3.20 Multifunctional carbon nanotube yarns and textiles 150

4.3.21 Polymeric structures used in specialist structural and other textile applications 151

4.3.22 Polymer tapes and films with microcapillaries 151

4.3.23 Gold nanoparticles as colourants and functional entities in high fashion textiles 152

4.3.24 Self-cleaning fabrics 152

4.3.25 New smart organic compounds 153

4.3.26 Photocatalytic textile coatings 154

4.3.27 Polymeric structures used in specialist structural and other textile applications 155

4.3.28 Protective anti-fouling coatings 155

4.3.29 Smart textiles 156

4.3.30 Anti-microbial treatments for cellulosic and synthetic fibres 157

4.3.31 Anti-bacterial PP fibres for non-wearable textiles 158

4.3.32 Water-repelling, oil-repelling anti-staining chemically adsorbed film 158

4.3.33 Surface modification of fabrics, colloids 159

4.3.34 Shape memory polymers for intelligent textiles 160

4.3.35 Self-cleaning fabrics 160

4.3.36 Electrospun magnetic nanofibres with anti-counterfeiting applications in clothing 161

4.3.37 Self-cleaning fabrics 162

4.3.38 Carbon nanotube yarns 162

4.3.39 Anti-microbial polymer coating of fabrics 163

4.3.40 Carbon nanotubes for electronic textiles 163

4.3.41 Fragrance release textiles 164

5 GLOSSARY 166

####

For more information, please click here

Contacts:
Nicolas Bombourg
Reportlinker

US: (805)652-2626
Intl: +1 805-652-2626

Copyright © Reportlinker

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Products

Spectradyne Partners with Particle Technology Labs for Measurement Services December 6th, 2018

Mode-Changing MEMS Accelerometer from STMicroelectronics Combines High Measurement Resolution and Ultra-Low Power for Industrial Applications November 7th, 2018

Fat-Repellent Nanolayers Can Make Oven Cleaning Easier October 17th, 2018

Aculon, Inc. Enters into Strategic Partnership Agreement with Henkel Corporation to Supply Key Mobile Device Manufacturers with NanoProof® PCB Waterproof Technology October 17th, 2018

Nanomedicine

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Sensors

$900,000 awarded to optimize graphene energy harvesting devices: The WoodNext Foundation's commitment to U of A physicist Paul Thibado will be used to develop sensor systems compatible with six different power sources January 12th, 2024

A color-based sensor to emulate skin's sensitivity: In a step toward more autonomous soft robots and wearable technologies, EPFL researchers have created a device that uses color to simultaneously sense multiple mechanical and temperature stimuli December 8th, 2023

New tools will help study quantum chemistry aboard the International Space Station: Rochester Professor Nicholas Bigelow helped develop experiments conducted at NASA’s Cold Atom Lab to probe the fundamental nature of the world around us November 17th, 2023

TU Delft researchers discover new ultra strong material for microchip sensors: A material that doesn't just rival the strength of diamonds and graphene, but boasts a yield strength 10 times greater than Kevlar, renowned for its use in bulletproof vests November 3rd, 2023

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers/Posters

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Textiles/Clothing

This new fabric coating could drastically reduce microplastic pollution from washing clothes: University of Toronto Engineering researchers are working on a fabric finish to prevent microplastic fibres from shedding during laundry cycles January 27th, 2023

Protective equipment with graphene nanotubes meets the strictest ESD safety standards March 25th, 2022

Polymer fibers with graphene nanotubes make it possible to heat hard-to-reach, complex-shaped items February 11th, 2022

Flexible material shows potential for use in fabrics to heat, cool July 3rd, 2020

Nanobiotechnology

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project