Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Nanomaterial growth platform's end-to-end processing purity offers breakthrough for developers targetting commercial manufacturing

Surrey NanoSystems has launched an automated and exceptionally versatile growth platform for nanomaterials.
Surrey NanoSystems has launched an automated and exceptionally versatile growth platform for nanomaterials.

Abstract:
* incorporates nine of the top processes used in nanomaterial development
* first platform to maintain vacuum from catalyst delivery to material growth

Nanomaterial growth platform's end-to-end processing purity offers breakthrough for developers targetting commercial manufacturing

Placentia, CA | Posted on July 6th, 2010

Today, Surrey NanoSystems sets a new benchmark for the production of nanomaterials with the launch of an automated and exceptionally versatile growth platform, NanoGrowth-Catalyst. Incorporating nine advanced nanomaterial processing techniques, the platform can synthesise an exceptional variety of nanomaterials including graphene, nanowires and carbon nanotubes.

Application versatility is enhanced by a multi-chamber design - a first in this industry sector - that ensures the purest processing conditions by continuously maintaining the substrate under vacuum from deposition of catalysts to growth of nanomaterials. This end-to-end vacuum processing is critical for the precursors and catalysts used for nanomaterials, which are easily contaminated by exposure to atmosphere.

"Surrey NanoSystems entered the business world with a groundbreaking platform combining both CVD and plasma-enhanced CVD nanomaterial growth techniques," says Ben Jensen of Surrey NanoSystems. "This new platform takes processing flexibility much farther. It offers the means to support and speed research across the spectrum of nanomaterials, combined with automated handling and control to help developers turn material growth ideas into practical and repeatable production processes."

NanoGrowth-Catalyst will replace multiple pieces of equipment with a single automated system. The processing techniques supported by the new platform are: LPCVD (low-pressure chemical vapour deposition) and PECVD (plasma-enhanced CVD), sputtering, sputter etching and ashing, delivery of solid- or liquid-phase catalysts/precursors, creation of controlled-density nanoparticle catalysts at room temperature, thermal annealing, rapid thermal processing (RTP), and a unique form of rapid thermal growth for nanomaterials called RTG which has been developed to prevent agglomeration of catalyst particles.

The platform also supports broadband substrate degassing to remove surface contaminants before processing - helping to ensure the optimum adhesion of catalysts and films. An inductively coupled plasma source can additionally be fitted as an option - at the time of purchase or during the platform's lifecycle - to optimise the generation of sensitive materials employed in growth processes.

A highly graphical interface gives users complete control over the processing parameters and steps. With its range of techniques users can employ NanoGrowth-Catalyst for creating or delivering growth catalysts and precursors (the sputtering platform's dual magnetrons also support co-deposition), depositing nanoparticles at room temperature, catalyst or material activation, growing materials, etching, and deposition of active or passive barrier films.

The system has three chambers: a load/lock chamber and two reaction chambers, plus an automatic transport system for moving wafers/substrates. End-to-end atmosphere-free processing ensures the highest purity conditions to minimise contamination and oxidation and ensure consistent and repeatable results. Despite its extensive capability, NanoGrowth-Catalyst occupies only a very small cleanroom footprint of 1 x 2 m.

The specification for this richly equipped platform came partly from requests by users of Surrey NanoSystems' first growth platform, the single reaction chamber NanoGrowth 1000n, and from researchers at Surrey NanoSystems and its research partner, the Advanced Technology Institute at the University of Surrey.

In addition to making growth platforms, Surrey NanoSystems is engaged in developing nanoelectronics materials and processes to support the continued scaling of semiconductor devices. NanoGrowth-Catalyst's automated handling and wealth of processing capabilities are seen as the ultimate platform to support the company's own research into nanomaterial growth at temperatures compatible with mainstream CMOS fabrication. The company has already made significant advances in developing practical techniques for fabricating interconnection vias and low-k dielectrics for inter-layer insulation - key challenges on the semiconductor industry's roadmap as process geometries shrink.

"We expect this new growth tool to shorten the time to market for researching nanomaterials and applying them to commercial products," adds Ben Jensen. "There is nothing to compare with it on the market today and it offers a uniquely powerful means of investigating and developing nanomaterial technologies."

Surrey NanoSystems has already received advance orders for the new NanoGrowth-Catalyst, and is currently manufacturing an initial batch of three systems.

Surrey NanoSystems is represented in the USA by Axiom Resources Technologies.

####

For more information, please click here

Contacts:
Media contact:
Ben Jensen
CTO, Surrey NanoSystems
t: +44 (0) 1273 515899


Surrey NanoSystems, Euro Business Park, Building 24
Newhaven, BN9 0DQ, UK
t: +44 (0)1273 515899

Copyright © Surrey NanoSystems

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Chemistry

Using green tea as reducing reagent for the preparation of nanomaterials to synthesize ammonia December 3rd, 2021

News and information

Optimized method to detect high-dimensional entanglement December 3rd, 2021

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Nanotubes/Buckyballs/Fullerenes/Nanorods

Graphene nanotubes offer an efficient replacement for carbon additives in conductive electrical heating paints November 3rd, 2021

Graphene nanotubes provide a shortcut to add conductivity to powder coatings October 1st, 2021

Scientists demonstrate pathway to forerunner of nanotubes that could lead to widespread industrial fabrication September 17th, 2021

From anti-icing coatings to protection of containers with flammable liquids: heating films with graphene nanotubes enter the market August 20th, 2021

Materials/Metamaterials

Researchers develop polyimide-mica nanocomposite film with high resistance to low earth orbit environments December 3rd, 2021

An artificial material that can sense, adapt to its environment: University of Missouri engineers are collaborating with researchers at University of Chicago to design the material November 5th, 2021

UTA project aims to extend life of concrete, cement by adding nanoscale wood fibers: Wood fibers key to sustainable concrete, cement September 24th, 2021

Nanocellulose decorated with proteins is suitable for 3D cell culturing September 24th, 2021

Announcements

Scientists edge closer to probe that would inspect atherosclerotic plaques by forcing molecules to sound their presence December 3rd, 2021

Two-dimensional bipolar magnetic semiconductors with high Curie-temperature and electrically controllable spin polarization realized in exfoliated Cr(pyrazine)2 monolayers December 3rd, 2021

Review on the femtosecond laser precision micro/nano-engineering December 3rd, 2021

Development of a single-process platform for the manufacture of graphene quantum dots: Precisely controls the bonding configuration of heteroatoms in graphene quantum dots through simple chemical processes. Practical application and commercialization in various fields is expected December 3rd, 2021

Tools

New microscopy method offers 3D tracking of 100 single molecules at once November 19th, 2021

Inspired by photosynthesis, scientists double reaction quantum efficiency October 1st, 2021

Ultrasound at the nanometre scale reveals the nature of force September 17th, 2021

Tweezer grant pleases Rice researchers: University wins NSF grant to acquire ‘optical tweezer’ to manipulate micron-scale matter September 10th, 2021

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project