Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Replicating a sticky situation in nature

Geckos can move on virtually all surfaces, vertical and horizontal, due to their foot pads.  Photo by iStock.
Geckos can move on virtually all surfaces, vertical and horizontal, due to their foot pads. Photo by iStock.

Abstract:
Inspired by the ease with which gecko lizards can move on almost any surface, researchers at Northeastern University, the Korea Institute of Science and Technology and Seoul National University hope to reproduce properties found in the gecko's footpad for applications ranging from adhesives to robotic movement and navigation.

Replicating a sticky situation in nature

Boston, MA | Posted on July 5th, 2010

The team, led by Ashkan Vaziri, assistant professor of mechanical and industrial engineering at Northeastern, and Myoung-Woon Moon, of the Korea Institute of Science and Technology, created nanoscale and microscale patterned surfaces with adhesion and friction properties similar to that of the gecko footpad.

The innovative methodology, published online and in the academic journal Soft Matter, could lead to the development of a "smart" adhesive that adapts to environmental stimuli, such as a curvy surface or a rough edge.

"The gecko footpad's unique structure and function make it one of the most efficient adhesion systems found in nature," said Vaziri, who also directs Northeastern's High Performance Materials and Structures Laboratory.

Gecko toes are covered by millions of hair-like structures called setae, each of which is five micrometers in size — smaller than a human hair. The ends of the setae are tipped with hundreds of spatula, which bend and conform to the surface on which the gecko is moving. These properties help geckos move robustly on virtually all vertical and horizontal surfaces.

The research team designed and created a series of micropillars, or hair-like structures, and exposed them to ion beam radiation. The radiation tilted the micropillars, resulting in a dual-surface area with unique adhesion and friction properties.

Through a series of experiments, the team found that the micropillars had qualitatively similar friction properties and function when compared to the gecko footpad.

"If equipped with micropillars, small high-tech robots [for research or military applications] might be able to climb with speed, precision and accuracy on uneven, slippery surfaces," said Vaziri.

The technology also could lead to a new generation of smart adhesives that are equipped to hold strong bonds with any surface, he said.

####

For more information, please click here

Contacts:
Jenny Catherine Eriksen
617-373-2802

Copyright © Northeastern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Possible Futures

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Academic/Education

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Lifeboat Foundation funds flying 3D-printed classroom cubesats with Perlan II April 16th, 2018

SUNY Poly’s Center for Semiconductor Research in Albany Earns World-Class TÜV SÜD AMERICA INC. ISO 9001:2015 Certification: Albany NanoTech Complex Certification Assures Top-Tier Quality in Semiconductor Test Structures; Certification a First for a SUNY Campus March 6th, 2018

Luleå University of Technology is using the Deben CT5000TEC stage to perform x-ray microtomography experiments with the ZEISS Xradia 510 Versa to understand deformation and strain inside inhomogeneous materials November 7th, 2017

Announcements

Remote-control shoots laser at nano-gold to turn on cancer-killing immune cells April 20th, 2018

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Observing biological nanotransporters: Chemistry April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Research partnerships

New qubit now works without breaks: A universal design for superconducting qubits has been created April 19th, 2018

Salt boosts creation of 2-D materials: Rice University scientists show how salt lowers reaction temperatures to make novel materials April 18th, 2018

Psst! A whispering gallery for light boosts solar cells April 14th, 2018

Artificial intelligence accelerates discovery of metallic glass: Machine learning algorithms pinpoint new materials 200 times faster than previously possible April 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project