Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Roche and IBM Collaborate to Develop Nanopore-Based DNA Sequencing Technology

A cross section of IBM's DNA Transistor simulated on Blue Gene supercomputer showing a single stranded DNA moving in the midst of (invisible) water molecules through the nanopore. The DNA molecule, at the center of the pore, contain the bases A, C, G and T, that code of biological information necessary for life.
A cross section of IBM's DNA Transistor simulated on Blue Gene supercomputer showing a single stranded DNA moving in the midst of (invisible) water molecules through the nanopore. The DNA molecule, at the center of the pore, contain the bases A, C, G and T, that code of biological information necessary for life.

Abstract:
Collaboration aims to accelerate human genome analysis and enable advancements in personalized healthcare

Roche and IBM Collaborate to Develop Nanopore-Based DNA Sequencing Technology

Yorktown Heights, NY & Branford, CN | Posted on July 4th, 2010

Roche (SIX: RO, ROG; OTCQX: RHHBY) and IBM (NYSE: IBM) announced today an agreement to develop a nanopore-based technology that will directly read and sequence human DNA quickly and efficiently. Focused on advancing IBM's recently published "DNA Transistor" technology, the collaboration will take advantage of IBM's leadership in microelectronics, information technology and computational biology and Roche's expertise in medical diagnostics and genome sequencing.

The novel technology, developed by IBM Research, offers true single molecule sequencing by decoding molecules of DNA as they are threaded through a nanometer-sized pore in a silicon chip. The approach holds the promise of significant advantages in cost, throughput, scalability, and speed compared to sequencing technologies currently available or in development.

"By applying a combination of computational biology, biotechnology, and nanotechnology skills, we are moving closer to producing a system that can quickly and accurately sequence DNA and translate the genome into medically-relevant genetic information," said Ajay Royyuru, Senior Manager of the Computational Biology Department at IBM Research. "The challenge of all nanopore-based sequencing technologies is to slow and control the motion of the DNA through the nanopore. We are developing the technology to achieve this so that the reader can accurately decode the DNA sequence."

Ultimately, the technology has the potential to improve throughput and reduce costs to achieve the vision of whole human genome sequencing at a cost of $100 to $1,000. Having access to an individual's personal genome could allow personalization of medical care.

"Sequencing is an increasingly critical tool for personalized healthcare. It can provide the individual genetic information necessary for the effective diagnosis and targeted treatment of diseases," explained Manfred Baier, Head of Roche Applied Science. "We are confident that this powerful technology - plus the combined strengths of IBM and Roche - will make low-cost whole genome sequencing and its benefits available to the marketplace faster than previously thought possible."

As part of the agreement, Roche will fund continued development of the technology at IBM and provide additional resources and expertise through collaboration with Roche's sequencing subsidiary, 454 Life Sciences. Roche will develop and market all products based on the technology.

Roche's investment in future genomic technologies builds upon the strength of its currently available 454 Sequencing Systems, which generate hundreds of thousands of long, high quality sequencing reads in hours. The technology is available for large-scale genomic analysis with the GS FLX System and for benchtop sequencing with the GS Junior System. Shown to provide significant medical value in targeted resequencing applications for virology and oncology research, 454 Sequencing Systems are poised to be first next-generation sequencing technology to move from the laboratory to the clinic.

For more information on 454 Sequencing Systems, visit www.454.com.

(with videos)

####

For more information, please click here

Contacts:
Michael Loughran
IBM Media Relations
914-945-1613



Dr. Ulrich Schwoerer
454 Life Sciences Corporation, a Roche Company
203-871-2300


Dr. Burkhard Ziebolz
Roche Diagnostics
+49 8856 604830

Copyright © IBM

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Videos/Movies

2-D material a brittle surprise: Rice University researchers finds molybdenum diselenide not as strong as they thought November 14th, 2016

Keystone Nano Announces The US FDA Has Awarded Orphan Drug Designation For Ceramides For The Treatment Of Liver Cancer November 8th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Nanomedicine

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Nanopolymer-modified protein array can pinpoint hard-to-find cancer biomarker November 17th, 2016

Announcements

Construction of practical quantum computers radically simplified: Scientists invent ground-breaking new method that puts quantum computers within reach December 5th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Nanobiotechnology

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Nanobiotix Provides Update on Global Development of Lead Product NBTXR3: Seven clinical trials across the world: More than 2/3 of STS patients recruited in the “act.in.sarc” Phase II/III trial: Phase I/II prostate cancer trial now recruiting in the U.S. November 28th, 2016

From champagne bubbles, dance parties and disease to new nanomaterials: Understanding nucleation of protein filaments might help with Alzheimer's Disease and type 2 Diabetes November 24th, 2016

Making spintronic neurons sing in unison November 18th, 2016

Alliances/Trade associations/Partnerships/Distributorships

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

Arrowhead and Spring Bank Announce Clinical Collaboration for ARC-520 and SB 9200 in Chronic Hepatitis B October 6th, 2016

Research partnerships

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Novel silicon etching technique crafts 3-D gradient refractive index micro-optics November 28th, 2016

Single photon converter -- a key component of quantum internet November 28th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project