Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Roche and IBM Collaborate to Develop Nanopore-Based DNA Sequencing Technology

A cross section of IBM's DNA Transistor simulated on Blue Gene supercomputer showing a single stranded DNA moving in the midst of (invisible) water molecules through the nanopore. The DNA molecule, at the center of the pore, contain the bases A, C, G and T, that code of biological information necessary for life.
A cross section of IBM's DNA Transistor simulated on Blue Gene supercomputer showing a single stranded DNA moving in the midst of (invisible) water molecules through the nanopore. The DNA molecule, at the center of the pore, contain the bases A, C, G and T, that code of biological information necessary for life.

Abstract:
Collaboration aims to accelerate human genome analysis and enable advancements in personalized healthcare

Roche and IBM Collaborate to Develop Nanopore-Based DNA Sequencing Technology

Yorktown Heights, NY & Branford, CN | Posted on July 4th, 2010

Roche (SIX: RO, ROG; OTCQX: RHHBY) and IBM (NYSE: IBM) announced today an agreement to develop a nanopore-based technology that will directly read and sequence human DNA quickly and efficiently. Focused on advancing IBM's recently published "DNA Transistor" technology, the collaboration will take advantage of IBM's leadership in microelectronics, information technology and computational biology and Roche's expertise in medical diagnostics and genome sequencing.

The novel technology, developed by IBM Research, offers true single molecule sequencing by decoding molecules of DNA as they are threaded through a nanometer-sized pore in a silicon chip. The approach holds the promise of significant advantages in cost, throughput, scalability, and speed compared to sequencing technologies currently available or in development.

"By applying a combination of computational biology, biotechnology, and nanotechnology skills, we are moving closer to producing a system that can quickly and accurately sequence DNA and translate the genome into medically-relevant genetic information," said Ajay Royyuru, Senior Manager of the Computational Biology Department at IBM Research. "The challenge of all nanopore-based sequencing technologies is to slow and control the motion of the DNA through the nanopore. We are developing the technology to achieve this so that the reader can accurately decode the DNA sequence."

Ultimately, the technology has the potential to improve throughput and reduce costs to achieve the vision of whole human genome sequencing at a cost of $100 to $1,000. Having access to an individual's personal genome could allow personalization of medical care.

"Sequencing is an increasingly critical tool for personalized healthcare. It can provide the individual genetic information necessary for the effective diagnosis and targeted treatment of diseases," explained Manfred Baier, Head of Roche Applied Science. "We are confident that this powerful technology - plus the combined strengths of IBM and Roche - will make low-cost whole genome sequencing and its benefits available to the marketplace faster than previously thought possible."

As part of the agreement, Roche will fund continued development of the technology at IBM and provide additional resources and expertise through collaboration with Roche's sequencing subsidiary, 454 Life Sciences. Roche will develop and market all products based on the technology.

Roche's investment in future genomic technologies builds upon the strength of its currently available 454 Sequencing Systems, which generate hundreds of thousands of long, high quality sequencing reads in hours. The technology is available for large-scale genomic analysis with the GS FLX System and for benchtop sequencing with the GS Junior System. Shown to provide significant medical value in targeted resequencing applications for virology and oncology research, 454 Sequencing Systems are poised to be first next-generation sequencing technology to move from the laboratory to the clinic.

For more information on 454 Sequencing Systems, visit www.454.com.

(with videos)

####

For more information, please click here

Contacts:
Michael Loughran
IBM Media Relations
914-945-1613



Dr. Ulrich Schwoerer
454 Life Sciences Corporation, a Roche Company
203-871-2300


Dr. Burkhard Ziebolz
Roche Diagnostics
+49 8856 604830

Copyright © IBM

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Videos/Movies

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Gas gives laser-induced graphene super properties: Rice University study shows inexpensive material can be superhydrophilic or superhydrophobic May 15th, 2017

Nanomedicine

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Announcements

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Leti to Demo 1st Wireless UNB Transceiver for ‘Massive Internet of Things’ at RFIC 2017 and IMS 2017: Leti Will also Present Three Papers & Two Workshops on 5G Communications IC Design, from RF to mm-Wave, During IMS 2017 and RFIC 2017 in Hawaii May 24th, 2017

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Nanobiotechnology

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

The brighter side of twisted polymers: Conjugated polymers designed with a twist produce tiny, brightly fluorescent particles with broad applications May 16th, 2017

Alliances/Trade associations/Partnerships/Distributorships

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

BASF and Landa partner to create revolutionary pigments for automotive coatings: The alliance combines BASF innovations with Landa nano-pigment technology April 5th, 2017

Leti Announces EU/South Korean Project for World’s First 5G-system Prototype: Coinciding with the 2018 Winter Games in PyeongChang, Korea, Prototype Will Be First Time State-of-the-art Terrestrial Wireless Communication Is Seamlessly Combined with Disruptive Satellite Communicati April 4th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Research partnerships

Three-dimensional graphene: Experiment at BESSY II shows that optical properties are tuneable May 24th, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Stanford scientists use nanotechnology to boost the performance of key industrial catalyst May 18th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project