Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Roche and IBM Collaborate to Develop Nanopore-Based DNA Sequencing Technology

A cross section of IBM's DNA Transistor simulated on Blue Gene supercomputer showing a single stranded DNA moving in the midst of (invisible) water molecules through the nanopore. The DNA molecule, at the center of the pore, contain the bases A, C, G and T, that code of biological information necessary for life.
A cross section of IBM's DNA Transistor simulated on Blue Gene supercomputer showing a single stranded DNA moving in the midst of (invisible) water molecules through the nanopore. The DNA molecule, at the center of the pore, contain the bases A, C, G and T, that code of biological information necessary for life.

Abstract:
Collaboration aims to accelerate human genome analysis and enable advancements in personalized healthcare

Roche and IBM Collaborate to Develop Nanopore-Based DNA Sequencing Technology

Yorktown Heights, NY & Branford, CN | Posted on July 4th, 2010

Roche (SIX: RO, ROG; OTCQX: RHHBY) and IBM (NYSE: IBM) announced today an agreement to develop a nanopore-based technology that will directly read and sequence human DNA quickly and efficiently. Focused on advancing IBM's recently published "DNA Transistor" technology, the collaboration will take advantage of IBM's leadership in microelectronics, information technology and computational biology and Roche's expertise in medical diagnostics and genome sequencing.

The novel technology, developed by IBM Research, offers true single molecule sequencing by decoding molecules of DNA as they are threaded through a nanometer-sized pore in a silicon chip. The approach holds the promise of significant advantages in cost, throughput, scalability, and speed compared to sequencing technologies currently available or in development.

"By applying a combination of computational biology, biotechnology, and nanotechnology skills, we are moving closer to producing a system that can quickly and accurately sequence DNA and translate the genome into medically-relevant genetic information," said Ajay Royyuru, Senior Manager of the Computational Biology Department at IBM Research. "The challenge of all nanopore-based sequencing technologies is to slow and control the motion of the DNA through the nanopore. We are developing the technology to achieve this so that the reader can accurately decode the DNA sequence."

Ultimately, the technology has the potential to improve throughput and reduce costs to achieve the vision of whole human genome sequencing at a cost of $100 to $1,000. Having access to an individual's personal genome could allow personalization of medical care.

"Sequencing is an increasingly critical tool for personalized healthcare. It can provide the individual genetic information necessary for the effective diagnosis and targeted treatment of diseases," explained Manfred Baier, Head of Roche Applied Science. "We are confident that this powerful technology - plus the combined strengths of IBM and Roche - will make low-cost whole genome sequencing and its benefits available to the marketplace faster than previously thought possible."

As part of the agreement, Roche will fund continued development of the technology at IBM and provide additional resources and expertise through collaboration with Roche's sequencing subsidiary, 454 Life Sciences. Roche will develop and market all products based on the technology.

Roche's investment in future genomic technologies builds upon the strength of its currently available 454 Sequencing Systems, which generate hundreds of thousands of long, high quality sequencing reads in hours. The technology is available for large-scale genomic analysis with the GS FLX System and for benchtop sequencing with the GS Junior System. Shown to provide significant medical value in targeted resequencing applications for virology and oncology research, 454 Sequencing Systems are poised to be first next-generation sequencing technology to move from the laboratory to the clinic.

For more information on 454 Sequencing Systems, visit www.454.com.

(with videos)

####

For more information, please click here

Contacts:
Michael Loughran
IBM Media Relations
914-945-1613



Dr. Ulrich Schwoerer
454 Life Sciences Corporation, a Roche Company
203-871-2300


Dr. Burkhard Ziebolz
Roche Diagnostics
+49 8856 604830

Copyright © IBM

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Videos/Movies

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

WiFi capacity doubled at less than half the size: Columbia Engineers develop the first on-chip RF circulator that doubles WiFi speeds with a single antenna -- could transform telecommunications April 18th, 2016

First-ever videos show how heat moves through materials at the nanoscale and speed of sound: Groundbreaking observations could help develop better, more efficient materials for electronics and alternative energy April 16th, 2016

Nanotubes assemble! Rice introduces 'Teslaphoresis' Reconfigured Tesla coil aligns, electrifies materials from a distance April 15th, 2016

Nanomedicine

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Nanobiotechnology

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Nuclear pores captured on film: Using an ultra fast-scanning atomic force microscope, researchers from the University of Basel have filmed 'living' nuclear pore complexes at work for the first time May 3rd, 2016

Alliances/Trade associations/Partnerships/Distributorships

Electrically Conductive Graphene Ink Enables Printing of Biosensors April 23rd, 2016

Leti Extends Collaboration with Qualcomm on CoolCubeTM 3D Integration Technology for High-Density, High-Performance ICs: Collaboration Goals Include Building an Ecosystem To Take the Chip-stacking Technology from Design to Fabrication April 13th, 2016

FEI Partners with Five Pharmaceutical Companies, the Medical Research Council and the University of Cambridge to form Cryo-EM Research Consortium April 5th, 2016

Strem Chemicals and SONA Nanotech Sign Distribution Agreement for the World’s First Gold Nanorods Synthesized without CTAB February 24th, 2016

Research partnerships

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

Making invisible physics visible: The Jayich Lab has created a new sensor technology that captures nanoscale images with high spatial resolution and sensitivity May 2nd, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic