Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Roche and IBM Collaborate to Develop Nanopore-Based DNA Sequencing Technology

A cross section of IBM's DNA Transistor simulated on Blue Gene supercomputer showing a single stranded DNA moving in the midst of (invisible) water molecules through the nanopore. The DNA molecule, at the center of the pore, contain the bases A, C, G and T, that code of biological information necessary for life.
A cross section of IBM's DNA Transistor simulated on Blue Gene supercomputer showing a single stranded DNA moving in the midst of (invisible) water molecules through the nanopore. The DNA molecule, at the center of the pore, contain the bases A, C, G and T, that code of biological information necessary for life.

Abstract:
Collaboration aims to accelerate human genome analysis and enable advancements in personalized healthcare

Roche and IBM Collaborate to Develop Nanopore-Based DNA Sequencing Technology

Yorktown Heights, NY & Branford, CN | Posted on July 4th, 2010

Roche (SIX: RO, ROG; OTCQX: RHHBY) and IBM (NYSE: IBM) announced today an agreement to develop a nanopore-based technology that will directly read and sequence human DNA quickly and efficiently. Focused on advancing IBM's recently published "DNA Transistor" technology, the collaboration will take advantage of IBM's leadership in microelectronics, information technology and computational biology and Roche's expertise in medical diagnostics and genome sequencing.

The novel technology, developed by IBM Research, offers true single molecule sequencing by decoding molecules of DNA as they are threaded through a nanometer-sized pore in a silicon chip. The approach holds the promise of significant advantages in cost, throughput, scalability, and speed compared to sequencing technologies currently available or in development.

"By applying a combination of computational biology, biotechnology, and nanotechnology skills, we are moving closer to producing a system that can quickly and accurately sequence DNA and translate the genome into medically-relevant genetic information," said Ajay Royyuru, Senior Manager of the Computational Biology Department at IBM Research. "The challenge of all nanopore-based sequencing technologies is to slow and control the motion of the DNA through the nanopore. We are developing the technology to achieve this so that the reader can accurately decode the DNA sequence."

Ultimately, the technology has the potential to improve throughput and reduce costs to achieve the vision of whole human genome sequencing at a cost of $100 to $1,000. Having access to an individual's personal genome could allow personalization of medical care.

"Sequencing is an increasingly critical tool for personalized healthcare. It can provide the individual genetic information necessary for the effective diagnosis and targeted treatment of diseases," explained Manfred Baier, Head of Roche Applied Science. "We are confident that this powerful technology - plus the combined strengths of IBM and Roche - will make low-cost whole genome sequencing and its benefits available to the marketplace faster than previously thought possible."

As part of the agreement, Roche will fund continued development of the technology at IBM and provide additional resources and expertise through collaboration with Roche's sequencing subsidiary, 454 Life Sciences. Roche will develop and market all products based on the technology.

Roche's investment in future genomic technologies builds upon the strength of its currently available 454 Sequencing Systems, which generate hundreds of thousands of long, high quality sequencing reads in hours. The technology is available for large-scale genomic analysis with the GS FLX System and for benchtop sequencing with the GS Junior System. Shown to provide significant medical value in targeted resequencing applications for virology and oncology research, 454 Sequencing Systems are poised to be first next-generation sequencing technology to move from the laboratory to the clinic.

For more information on 454 Sequencing Systems, visit www.454.com.

(with videos)

####

For more information, please click here

Contacts:
Michael Loughran
IBM Media Relations
914-945-1613



Dr. Ulrich Schwoerer
454 Life Sciences Corporation, a Roche Company
203-871-2300


Dr. Burkhard Ziebolz
Roche Diagnostics
+49 8856 604830

Copyright © IBM

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Videos/Movies

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

Nanomedicine

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Announcements

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Nanobiotechnology

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

Alliances/Trade associations/Partnerships/Distributorships

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Graphene breakthrough as Bosch creates magnetic sensor 100 times more sensitive than silicon equivalent June 28th, 2015

Dyesol Joins Solliance as an Industrial Partner June 17th, 2015

The European project SVARNISH, a step forward in the food packaging sector June 11th, 2015

Research partnerships

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Producing spin-entangled electrons July 2nd, 2015

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project