Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sandia labs reports first successful integration of a terahertz quantum-cascade laser and diode mixer into a monolithic solid-state transceiver

Abstract:
Improved control of "neglected middle-child" frequency range offers potential benefits

Sandia labs reports first successful integration of a terahertz quantum-cascade laser and diode mixer into a monolithic solid-state transceiver

Albuquerque, NM | Posted on July 1st, 2010

Sandia National Laboratories researchers have taken the first steps toward reducing the size and enhancing the functionality of devices in the terahertz (THz) frequency spectrum.

By combining a detector and laser on the same chip to make a compact receiver, the researchers rendered unnecessary the precision alignment of optical components formerly needed to couple the laser to the detector.

The new solid-state system puts to use the so-called "neglected middle child" frequency range between the microwave and infrared parts of the electromagnetic spectrum.

Terahertz radiation is of interest because some frequencies can be used to "see through" certain materials. Potentially they could be used in dental or skin cancer imaging to distinguish different tissue types. They also permit improved nondestructive testing of materials during production monitoring. Other frequencies could be used to penetrate clothing, and possibly identify chemical or biological weapons and narcotics.

Since the demonstration of semiconductor THz quantum cascade lasers (QCLs) in 2002, it has been apparent that these devices could offer unprecedented advantages in technologies used for security, communications, radar, chemical spectroscopy, radioastronomy and medical diagnostics.

Until now, however, sensitive coherent transceiver (transmitter/receiver) systems were assembled from a collection of discrete and often very large components. Similar to moving from discrete transistor to integrated chips in the microwave world and moving from optical breadboards to photonic integrated circuits in the visible/infrared world, this work represents the first steps toward reduction in size and enhanced functionality in the THz frequency spectrum.

The work, described in the current issue (June 27, 2010) of "Nature Photonics," represents the first successful monolithic integration of a THz quantum-cascade laser and diode mixer to form a simple, but generically useful, terahertz photonic integrated circuit — a microelectronic terahertz transceiver.

With investment from Sandia's Laboratory-Directed Research and Development (LDRD) program, the lab focused on the integration of THz QCLs with sensitive, high-speed THz Schottky diode detectors, resulting in a compact, reliable solid-state platform. The transceiver embeds a small Schottky diode into the ridge waveguide cavity of a QCL, so that local-oscillator power is directly supplied to the cathode of the diode from the QCL internal fields, with no optical coupling path.

The Sandia semiconductor THz development team, headed by Michael Wanke, also included Erik Young, Christopher Nordquist, Michael Cich, Charles Fuller, John Reno, Mark Lee — all of Sandia labs — and Albert Grine of LMATA Government Services, LLC, in Albuquerque. Young recently joined Philips Lumileds Lighting Co., in San Jose, Calif.

The paper is available online at: dx.doi.org/10.1038/NPHOTON.2010.137. Abstracts are available to everyone; full text only to subscribers.

####

About Sandia National Laboratories
Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

For more information, please click here

Contacts:
Sandia news media contact:
Neal Singer

(505) 845-7078

Sandia media relations contact: Stephanie Hobby

(505) 844-0948

Copyright © Sandia National Laboratories

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Possible Futures

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

A nano-roundabout for light December 10th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Photonics/Optics/Lasers

A nano-roundabout for light December 10th, 2016

ANU invention to inspire new night-vision specs December 7th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Controlled electron pulses November 30th, 2016

Quantum nanoscience

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Shape matters when light meets atom: Mapping the interaction of a single atom with a single photon may inform design of quantum devices December 4th, 2016

Trickling electrons: Close to absolute zero, the particles exhibit their quantum nature November 10th, 2016

Scientists set traps for atoms with single-particle precision: Technique may enable large-scale atom arrays for quantum computing November 7th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project