Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > SouthWest NanoTechnologies Awarded Lithium-Ion Vehicle Battery Development Grant Worth $500,000

Abstract:
Project Focused on Developing Carbon Nanotube Enhanced Cathode Materials for Electric Powered Vehicle Batteries

SouthWest NanoTechnologies Awarded Lithium-Ion Vehicle Battery Development Grant Worth $500,000

Norman, OK | Posted on June 30th, 2010

SouthWest NanoTechnologies Inc. (SWeNT), a leading manufacturer of single-wall and Specialty Multi-Wall (SMW™) Carbon Nanotubes (CNT), along with the University of Oklahoma (OU) have been awarded a prestigious grant from the Oklahoma Center for the Advancement of Science and Technology (OCAST).

This $500,000 funding is provided to develop CNT enhanced Cathode Materials that will form the basis for the production of low-cost and highly-efficient Li-ion electric vehicle batteries.

This Oklahoma Nanotechnology Applications Project (ONAP), "Advanced Cathode Materials for Next Generation Batteries used in All Electric Vehicles," is aimed at improving the Li-ion battery cyclability using SWeNT's SMW™ CNTs.

Under this three-year grant, SWeNT will be working with OU to solidify partnerships with automotive manufacturers as well as Li-ion battery producers to advance fully battery-powered vehicles. SWeNT will supply "nanocomposite paste" formulations containing SMW™ CNTs which will be sold to fabricators of finished cathodes and battery manufacturers. In ten years, SWeNT estimates that demand for these materials could exceed six tons of CNT daily.

"We are honored to receive this significant ONAP grant and we are truly grateful for the continued support of OCAST," says SWeNT CEO Dave Arthur. "We plan to demonstrate that our SMW™ carbon nanotubes are the best cost/performance solution of all available carbon nanomaterials for Li-ion batteries used in automotive and other applications. Our success could lead to significant economic growth for the state of Oklahoma, as well as help enable a key strategic initiative for our country -- to stimulate domestic production of Li-ion batteries for electric powered vehicles and greatly reduce our dependency on foreign oil."

Today, Li-ion batteries have a limited lifespan, due to the degradation of battery capacity after each charge/discharge cycle. "Consumers have accepted this battery performance for mobile devices such as laptop computers and cell phones, but this limitation will not be tolerated for electric powered vehicles", Arthur explains. During charging and discharging, the conductive carbon black particles used in today's Li-ion battery cathodes start to separate, which diminishes the ability of the carbon particle network to conduct electricity and heat efficiently, resulting in significant degradation of battery capacity over time.

Due to the ultra-long tubular shape of SMW™ CNTs, they can form three-dimensional conductive networks at much lower loading than carbon black particles (capacity advantage). These networks are expected to be much more robust, to better withstand swelling/de-swelling and thermal/mechanical stresses (cyclability advantage).

"SWeNT SMW™ CNTs offer performance advantages over traditional multi-wall CNTs because of their significantly higher purity (99.9%) and superior tube structure (smaller diameter, fewer walls, fewer defects)," Arthur says. "They are also manufactured using the patented CoMoCAT® process, which is inherently scalable and leads to consistent quality control at an affordable price. This is especially important when production rates are in the range of "tons" per day."

Another key differentiator is SWeNT's willingness and ability to make customized nanocomposite paste formulations that combine SMW™ CNTs with other cathode material components such as solvents, binders and possibly lithium compounds. These nanocomposite pastes are easier and safer to use than traditional multi-wall CNT powders.

####

About SouthWest NanoTechnologies
SouthWest NanoTechnologies (SWeNT) is a privately-held specialty chemical company that manufactures high quality single-wall and specialty multi-wall carbon nanotubes, printable inks and CNT-coated fabrics for a range of products and applications including energy-efficient lighting, affordable photovoltaics, improved energy storage and printed electronics. SWeNT was created in 2001 to spin off nanotube research developed at the University of Oklahoma. For more information, please visit www.swentnano.com.

About ONAP
ONAP was created by the Oklahoma Legislature to initiate a statewide project to develop an infrastructure that supports Oklahoma’s nanotechnology industry. ONAP, in partnership with academic, commercialization and economic development resources, provides a mechanism to extend financial support and technical services for the application of nanotechnology in Oklahoma’s manufacturing and business community.

For more information, please click here

Contacts:
Andrew Lavin
A. Lavin Communications
516-944-4486

www.alavin.com

Copyright © SouthWest NanoTechnologies

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Nanotubes/Buckyballs/Fullerenes

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Energy

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Nanoparticles present sustainable way to grow food crops May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Automotive/Transportation

A View Through Wood Shows Futuristic Applications: Transparent wood made at UMD could create new windows, cars and solar panels May 5th, 2016

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

Highlights from the Graphene Flagship April 22nd, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Animal study shows flexible, dissolvable silicon device promising for brain monitoring: Other applications include post-operative observation for vascular, cardiac, and orthopaedic procedures, finds Penn study May 5th, 2016

Molybdenum disulfide holds promise for light absorption: Rice researchers probe light-capturing properties of atomically thin MoS2 May 5th, 2016

A compact, efficient single photon source that operates at ambient temperatures on a chip: Highly directional single photon source concept is expected to lead to a significant progress in producing compact, cheap, and efficient sources of quantum information bits for future appls May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic