Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > K-State research team using nanoscale particles to battle cancer

Abstract:
Forget surgery. One team of Kansas State University researchers is exploring nanoparticle-induced hyperthermia in the battle against cancer.

K-State research team using nanoscale particles to battle cancer

Manhattan, KS | Posted on June 29th, 2010

Since 2007 the team of Deryl Troyer, professor of anatomy and physiology; Viktor Chikan, assistant professor of chemistry; Stefan Bossmann, professor of chemistry; Olga Koper, adjunct professor of chemistry at K-State and vice president of technology and chief technology officer for NanoScale Corporation; and Franklin Kroh, senior scientist at NanoScale Corporation, has been using iron-iron oxide nanoparticles to overheat or bore holes through cancerous tissue to kill it. The nanoparticles are coupled with a diagnostic dye. When the dye is released from the nanoparticle's electronic sphere, it coats other cancerous tissues within the body, making cancer masses easier for medical professionals to detect.

The team is partnered with NanoScale Corporation, a Manhattan company that develops and commercializes advanced materials, products and applications.

Their research, which was explored in mouse models, is currently being reviewed for pre-clinical trials. If accepted, Bossmann said he's optimistic about what it could mean for people with cancer.

"It means within the next decade there is a chance to have an inexpensive cancer treatment with a higher probability of success than chemotherapy," he said. "We have so many drug systems that are outrageously expensive. The typical cancer patient has a million dollars in costs just from the drugs, and this method can be done for about a tenth of the cost.

"Also, our methods are physical methods; cancer cells cannot develop a resistance against physical methods," Bossmann said. "Cancer cells can develop resistance against chemotherapeutics, but they cannot against just being heated to death or having a hole made in them."

While overheating or boring into cancerous cells may sound extreme, the nanoparticles act with orchestrated precision once ingested by the cancer cells, Bossmann said.

Getting the nanoparticles into the cancerous tissue is a lot like fishing, he said.

"We have our fishing pole with the nanoparticles as a very attractive bait that the cancer wants to gobble up -- like a worm is for a fish," he said.

In this case, the bait is a layer of organic material that attracts the cancer to the nanoparticles. The cancer wants the coating for its metabolism. In addition to serving as bait, the organic layer also serves as a cloaking mechanism from the body's defenses, which would otherwise destroy the foreign objects.

Once inside, the nanoparticles -- made with a metal iron core and layered with iron oxide and an organic coating -- go to work. An alternating magnetic field causes the particles to produce friction heat, which is transferred to the cancer cells' surrounding proteins, lipids and water, creating little hotspots. With enough hotspots the tumor cells are heated to death, preserving the healthy tissue, Bossmann said. If the hotspots are not concentrated, the heat destroys the cell's proteins or lipid structures, dissolving the cell membrane. This creates a hole in the tumor and essentially stresses it to death.

"A little stress can push a tumor over the edge," Bossmann said.

The dye within each nanoparticle's electronic sphere is then severed by enzymes and used to check for cancerous masses within the body.

"In the future, someone might be able to develop a blood test because part of these enzymes escape into the bloodsteam. In five years or so, we may be able to draw a blood sample from the patient to see if the patient has cancer, and from the distribution of cancer-related enzymes, what cancer they most likely have," Bossmann said.

While the team has tested the platform only on melanoma and on pancreatic and breast cancer, Bossmann said their technique can be applied to any type of cancer.

The team filed a patent in 2008.

The group's research has been funded by grants from the National Science Foundation, K-State's Terry C. Johnson Center for Basic Cancer Research and the National Institutes of Health/Small Business Innovation Research.

####

For more information, please click here

Contacts:
Source: Stefan Bossmann, 785-532-6817,

Contact or 785-532-2535

News release prepared by: Greg Tammen, 785-532-2535,

Copyright © Kansas State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Possible Futures

Designing climate-friendly concrete, from the nanoscale up: New understanding of concrete’s properties could increase lifetime of the building material, decrease emissions July 25th, 2016

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Academic/Education

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

SUNY Poly Celebrates Its 10th Year Exhibiting at SEMICON West with Cutting Edge Developments in Integrated Photonics and Power Electronics July 8th, 2016

FEI and King Abdullah University of Science and Technology Establish New Electron Microscopy ‘Centre of Excellence’: Centre of Excellence involves materials and life sciences research and technical collaboration July 5th, 2016

Nanomedicine

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

New superconducting coil improves MRI performance: UH-led research offers higher resolution, shorter scan time July 23rd, 2016

New probe developed for improved high resolution measurement of brain temperature: Improved accuracy could allow researchers to measure brain temperature in times of trauma when small deviations in temperature can lead to additional brain injury July 23rd, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Patents/IP/Tech Transfer/Licensing

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Research team led by NUS scientists develop plastic flexible magnetic memory device: Novel technique to implant high-performance magnetic memory chip on a flexible plastic surface without compromising performance July 21st, 2016

New nanoscale technologies could revolutionize microscopes, study of disease July 20th, 2016

Keystone Nano selected as a top scoring company by NCI investor review panel July 19th, 2016

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

Scientists glimpse inner workings of atomically thin transistors July 21st, 2016

Nanobiotechnology

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

New remote-controlled microrobots for medical operations July 23rd, 2016

Nanoparticle versus cancer: Scientists have created nanoparticles which cure cancer harmlessly July 22nd, 2016

New reaction for the synthesis of nanostructures July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic