Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > K-State research team using nanoscale particles to battle cancer

Abstract:
Forget surgery. One team of Kansas State University researchers is exploring nanoparticle-induced hyperthermia in the battle against cancer.

K-State research team using nanoscale particles to battle cancer

Manhattan, KS | Posted on June 29th, 2010

Since 2007 the team of Deryl Troyer, professor of anatomy and physiology; Viktor Chikan, assistant professor of chemistry; Stefan Bossmann, professor of chemistry; Olga Koper, adjunct professor of chemistry at K-State and vice president of technology and chief technology officer for NanoScale Corporation; and Franklin Kroh, senior scientist at NanoScale Corporation, has been using iron-iron oxide nanoparticles to overheat or bore holes through cancerous tissue to kill it. The nanoparticles are coupled with a diagnostic dye. When the dye is released from the nanoparticle's electronic sphere, it coats other cancerous tissues within the body, making cancer masses easier for medical professionals to detect.

The team is partnered with NanoScale Corporation, a Manhattan company that develops and commercializes advanced materials, products and applications.

Their research, which was explored in mouse models, is currently being reviewed for pre-clinical trials. If accepted, Bossmann said he's optimistic about what it could mean for people with cancer.

"It means within the next decade there is a chance to have an inexpensive cancer treatment with a higher probability of success than chemotherapy," he said. "We have so many drug systems that are outrageously expensive. The typical cancer patient has a million dollars in costs just from the drugs, and this method can be done for about a tenth of the cost.

"Also, our methods are physical methods; cancer cells cannot develop a resistance against physical methods," Bossmann said. "Cancer cells can develop resistance against chemotherapeutics, but they cannot against just being heated to death or having a hole made in them."

While overheating or boring into cancerous cells may sound extreme, the nanoparticles act with orchestrated precision once ingested by the cancer cells, Bossmann said.

Getting the nanoparticles into the cancerous tissue is a lot like fishing, he said.

"We have our fishing pole with the nanoparticles as a very attractive bait that the cancer wants to gobble up -- like a worm is for a fish," he said.

In this case, the bait is a layer of organic material that attracts the cancer to the nanoparticles. The cancer wants the coating for its metabolism. In addition to serving as bait, the organic layer also serves as a cloaking mechanism from the body's defenses, which would otherwise destroy the foreign objects.

Once inside, the nanoparticles -- made with a metal iron core and layered with iron oxide and an organic coating -- go to work. An alternating magnetic field causes the particles to produce friction heat, which is transferred to the cancer cells' surrounding proteins, lipids and water, creating little hotspots. With enough hotspots the tumor cells are heated to death, preserving the healthy tissue, Bossmann said. If the hotspots are not concentrated, the heat destroys the cell's proteins or lipid structures, dissolving the cell membrane. This creates a hole in the tumor and essentially stresses it to death.

"A little stress can push a tumor over the edge," Bossmann said.

The dye within each nanoparticle's electronic sphere is then severed by enzymes and used to check for cancerous masses within the body.

"In the future, someone might be able to develop a blood test because part of these enzymes escape into the bloodsteam. In five years or so, we may be able to draw a blood sample from the patient to see if the patient has cancer, and from the distribution of cancer-related enzymes, what cancer they most likely have," Bossmann said.

While the team has tested the platform only on melanoma and on pancreatic and breast cancer, Bossmann said their technique can be applied to any type of cancer.

The team filed a patent in 2008.

The group's research has been funded by grants from the National Science Foundation, K-State's Terry C. Johnson Center for Basic Cancer Research and the National Institutes of Health/Small Business Innovation Research.

####

For more information, please click here

Contacts:
Source: Stefan Bossmann, 785-532-6817,

Contact or 785-532-2535

News release prepared by: Greg Tammen, 785-532-2535,

Copyright © Kansas State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

New imaging agent provides better picture of the gut July 30th, 2014

Nanometrics Reports Second Quarter 2014 Financial Results July 30th, 2014

Possible Futures

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

Academic/Education

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

STFC takes delivery of the 100th Hitachi Tabletop SEM in the UK July 3rd, 2014

Innovation Management and the Emergence of the Nanobiotechnology Industry July 1st, 2014

Nanomedicine

New imaging agent provides better picture of the gut July 30th, 2014

Zenosense, Inc. July 29th, 2014

Optimum inertial design for self-propulsion: A new study investigates the effects of small but finite inertia on the propulsion of micro and nano-scale swimming machines July 29th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Announcements

Pressure probing potential photoelectronic manufacturing compound July 31st, 2014

NanoScience: Giants of the Infinitesimal July 31st, 2014

Analytical solutions from Malvern Instruments support University of Wisconsin-Milwaukee researchers in understanding environmental effects of nanomaterials July 30th, 2014

FEI Unveils New Solutions for Faster Time-to-Analysis in Metals Research July 30th, 2014

Patents/IP/Tech Transfer/Licensing

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

UCF Nanotech Spinout Developing Revolutionary Battery Technology: Power the Next Generation of Electronics with Carbon July 23rd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

New imaging agent provides better picture of the gut July 25th, 2014

Hysitron is Awarded TWO R&D 100 Awards for Highly Innovative Technology Developments in the Areas of Extreme Environments and Biological Mechanical Property Testing July 23rd, 2014

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

Nanobiotechnology

Harris & Harris Group Invests in Unique NYC Biotech Accelerator July 29th, 2014

Seeing is bead-lieving: Rice University scientists create model 'bead-spring' chains with tunable properties July 28th, 2014

FEI adds Phase Plate Technology and Titan Halo TEM to its Structural Biology Product Portfolio: New solutions provide the high-quality imaging and contrast necessary to analyze the 3D structure of molecules and molecular complexes July 28th, 2014

Scientists Test Nanoparticle "Alarm Clock" to Awaken Immune Systems Put to Sleep by Cancer July 25th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE