Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Carbon nanotubes form ultrasensitive biosensor to detect proteins

Abstract:
A cluster of carbon nanotubes coated with a thin layer of protein-recognizing polymer form a biosensor capable of using electrochemical signals to detect minute amounts of proteins, which could provide a crucial new diagnostic tool for the detection of a range of illnesses, a team of Boston College researchers report in the journal Nature Nanotechnology.

Carbon nanotubes form ultrasensitive biosensor to detect proteins

Boston, MA | Posted on June 27th, 2010

The nanotube biosensor proved capable of detecting human ferritin, the primary iron-storing protein of cells, and E7 oncoprotein derived from human papillomavirus. Further tests using calmodulin showed the sensor could discriminate between varieties of the protein that take different shapes, according to the multi-disciplinary team of biologists, chemists and physicists.

Molecular imprinting techniques have shown that polymer structures can be used in the development of sensors capable of recognizing certain organic compounds, but recognizing proteins has presented a difficult set of challenges. The BC team used arrays of wire-like nanotubes - approximately one 300th the size of a human hair - coated with a non-conducting polymer coating capable of recognizing proteins with subpicogram per liter sensitivity.

Central to the function of the sensor are imprints of the protein molecules within the non-conducting polymer coating. Because the imprints reduce the thickness of the coating, these regions of the polymer register a lower level of impedance than the rest of the polymer insulator when contacted by the charges inherent to the proteins and an ionized saline solution. When a protein molecule drops into its mirror image, it fills the void in the insulator, allowing the nanotubes to register a corresponding change in impedance, signaling the presence of the protein, according to co-author Dong Cai, an associate research professor of Biology at BC.

The detection can be read in real time, instead of after days or weeks of laboratory analysis, meaning the nanotube molecular imprinting technique could pave the way for biosensors capable of detecting human papillomavirus or other viruses weeks sooner than available diagnostic techniques currently allow. As opposed to searching for the HPV antibody or cell-mediated immine responses after initial infection, the nanotube sensor can track the HPV protein directly. In addition, no chemical marker is required by the lebel-free electrochemical detection methods.

"In the case of some diseases, no one can be sure why someone is ill," said Cai. "All that may be known is that it might be a virus. At that time, the patient may not have detectable serum antibodies. So at a time when it is critical to obtain a diagnosis, there may not be any traces of the virus. You've basically lost your chance. Now we can detect surface proteins of the virus itself through molecular imprinting and do the analysis."

In addition to Cai and Professor of Biology Thomas C. Chiles, the Boston College team included Assistant Professor Jeffrey Chuang and researchers Chenjia Xu and Lu Zhang of the Department of Biology; Professor Mary Roberts of the Department of Chemistry; Professor Michael Naughton, Professor Zhifeng Ren and researchers Yucheng Lan, Ying Yu and Hengzhi Wang, and Huaizhou Zhao of the Department of Physics; and researchers Lu Ren, and Ying Yu, also affiliated with the Institute of Nanoscience and Nanotechnology at Central China Normal University.

####

For more information, please click here

Contacts:
Ed Hayward

617-552-4826

Copyright © Boston College

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

Nanomedicine

Spinning strands hint at folding dynamics: Rice University lab uses magnetic beads to model microscopic proteins, polymers October 17th, 2017

Arrowhead Pharmaceuticals to Present Preclinical Data on ARO-AAT at The Liver Meeting(R) October 10th, 2017

Arrowhead to Present at Chardan Gene Therapy Conference October 3rd, 2017

'CRISPR-Gold' fixes Duchenne muscular dystrophy mutation in mice October 3rd, 2017

Sensors

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Rice U. study: Vibrating nanoparticles interact: Placing nanodisks in groups can change their vibrational frequencies October 16th, 2017

Single Ďsolitonsí promising for optical technologies October 9th, 2017

Two dimensional materials: Advanced molybdenum selenide near infrared phototransistors September 27th, 2017

Discoveries

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

MIPT scientists revisit optical constants of ultrathin gold films October 20th, 2017

Announcements

Creation of coherent states in molecules by incoherent electrons October 21st, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Strange but true: turning a material upside down can sometimes make it softer October 20th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Techís Contribution Includes Litenís Knowhow in Magnetic Materials and Simulation And Letiís Expertise in Wide-bandgap Semiconductors October 20th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project