Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Engineering researchers achieve organic laser breakthrough

Abstract:
Researchers at the University of Michigan have achieved a long sought-after optics phenomenon that could lead to more efficient and flexible lasers for telecommunications and quantum computing applications, among other uses.

Engineering researchers achieve organic laser breakthrough

Ann Arbor, MI | Posted on June 24th, 2010

The researchers demonstrated polariton lasing for the first time in an organic semiconductor material at room temperature. Their results are published in the June issue of Nature Photonics.

An organic material primarily contains carbon, and can sometimes have biological origin. This is in contrast to inorganic semiconductors such as silicon or gallium arsenide commonly found in modern electronic circuitry.

A polariton is not exactly a particle, but it behaves as if it were. It is a "coupled quantum mechanical state" between an excited molecule and a photon, or particle of light.

"You can think about it as two pendulums side by side tied together with a spring. They have to work together," said Stephen Forrest, principal investigator. Forrest is the William Gould Dow Collegiate Professor of Electrical Engineering, a professor in the Department of Physics and the university's vice president for research.

"This is a potential route to a whole bunch of new phenomena for new applications," Forrest said. "People have been trying to do this for about a decade—to see polariton lasing at room temperature. In my lab, my student Stephane Kena-Cohen took five years to succeed in this discovery. He had to figure out new ways to grow crystalline organic materials between highly reflective mirrors, and then to do the complicated measurements with optical pulses shorter than one-trillionth of a second."

The team is working toward building organic lasers that, like many inorganic lasers today, can be excited with electricity rather than light. So-called electrically pumped lasers are more efficient and useful than their optically pumped counterparts. But so far, organic semiconductors have been too fragile to survive exposure to the amount of electrical current necessary to get them to operate as lasers.

"We're looking at polaritons as a way to do electrical pumping of organic semiconductors at extremely low currents," Forrest said. "We still optically pumped the sample in this experiment, and the next step is to find better materials and higher quality optical cavities in order to eventually electrically pump the material into lasing."

Compared to inorganic materials, organic semiconductors offer a wider range of properties and are easier for chemists to tailor for specific purposes. Organics have untapped potential in telecommunications and computing, Forrest said.

The paper is "Room-temperature polariton lasing in an organic single-crystal microcavity." Forrest is also a professor in the Department of Materials Science and Engineering. His co-author is Stepane Kena-Cohen, a graduate student at Princeton University.

The work was conducted at the U-M Lurie Nanofabrication Facility. It is funded by Universal Display Corp. (UCD) and the Air Force Office of Scientific Research. The technology is being licensed to UCD, a company in which Forrest is a founder and member of the scientific advisory board.

####

For more information, please click here

Contacts:
Nicole Casal Moore
Phone: (734) 647-7087

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Possible Futures

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Harris & Harris Group Portfolio Company D-Wave Systems Announces 1,000 Qubit Processor and is Discussed in the Economist June 23rd, 2015

Global Nanoclays Market Analysis, Size, Growth, Trends And Segment Forecasts, 2015 To 2022: Grand View Research, Inc June 15th, 2015

Healthcare Nanotechnology (Nanomedicine) Market Size To 2020 June 5th, 2015

Academic/Education

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

Quantum Computing

The quantum middle man July 2nd, 2015

Freezing single atoms to absolute zero with microwaves brings quantum technology closer: Atoms frozen to absolute zero using microwaves July 2nd, 2015

Producing spin-entangled electrons July 2nd, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

Announcements

Production of Zirconium Carbide Nanoparticles at Low Temperature without Thermal Operations July 5th, 2015

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Photonics/Optics/Lasers

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Opening a new route to photonics Berkeley lab researchers find way to control light in densely packed nanowaveguides June 27th, 2015

The quantum spin Hall effect is a fundamental property of light June 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project