Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Engineering researchers achieve organic laser breakthrough

Abstract:
Researchers at the University of Michigan have achieved a long sought-after optics phenomenon that could lead to more efficient and flexible lasers for telecommunications and quantum computing applications, among other uses.

Engineering researchers achieve organic laser breakthrough

Ann Arbor, MI | Posted on June 24th, 2010

The researchers demonstrated polariton lasing for the first time in an organic semiconductor material at room temperature. Their results are published in the June issue of Nature Photonics.

An organic material primarily contains carbon, and can sometimes have biological origin. This is in contrast to inorganic semiconductors such as silicon or gallium arsenide commonly found in modern electronic circuitry.

A polariton is not exactly a particle, but it behaves as if it were. It is a "coupled quantum mechanical state" between an excited molecule and a photon, or particle of light.

"You can think about it as two pendulums side by side tied together with a spring. They have to work together," said Stephen Forrest, principal investigator. Forrest is the William Gould Dow Collegiate Professor of Electrical Engineering, a professor in the Department of Physics and the university's vice president for research.

"This is a potential route to a whole bunch of new phenomena for new applications," Forrest said. "People have been trying to do this for about a decade—to see polariton lasing at room temperature. In my lab, my student Stephane Kena-Cohen took five years to succeed in this discovery. He had to figure out new ways to grow crystalline organic materials between highly reflective mirrors, and then to do the complicated measurements with optical pulses shorter than one-trillionth of a second."

The team is working toward building organic lasers that, like many inorganic lasers today, can be excited with electricity rather than light. So-called electrically pumped lasers are more efficient and useful than their optically pumped counterparts. But so far, organic semiconductors have been too fragile to survive exposure to the amount of electrical current necessary to get them to operate as lasers.

"We're looking at polaritons as a way to do electrical pumping of organic semiconductors at extremely low currents," Forrest said. "We still optically pumped the sample in this experiment, and the next step is to find better materials and higher quality optical cavities in order to eventually electrically pump the material into lasing."

Compared to inorganic materials, organic semiconductors offer a wider range of properties and are easier for chemists to tailor for specific purposes. Organics have untapped potential in telecommunications and computing, Forrest said.

The paper is "Room-temperature polariton lasing in an organic single-crystal microcavity." Forrest is also a professor in the Department of Materials Science and Engineering. His co-author is Stepane Kena-Cohen, a graduate student at Princeton University.

The work was conducted at the U-M Lurie Nanofabrication Facility. It is funded by Universal Display Corp. (UCD) and the Air Force Office of Scientific Research. The technology is being licensed to UCD, a company in which Forrest is a founder and member of the scientific advisory board.

####

For more information, please click here

Contacts:
Nicole Casal Moore
Phone: (734) 647-7087

Copyright © University of Michigan

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Possible Futures

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Academic/Education

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Leti and Korea Institute of Science and Technology to Explore Collaboration on Advanced Technologies for Digital Era July 14th, 2016

SUNY Poly Celebrates Its 10th Year Exhibiting at SEMICON West with Cutting Edge Developments in Integrated Photonics and Power Electronics July 8th, 2016

Quantum Computing

Russian physicists discover a new approach for building quantum computers: Physicists find a way of 'bundling together' multiple elements of a quantum computer July 24th, 2016

New Yale-developed device lengthens the life of quantum information July 22nd, 2016

RMIT researchers make leap in measuring quantum states July 21st, 2016

Electron 'spin control' of levitated nanodiamonds could bring advances in sensors, quantum information processing July 20th, 2016

Announcements

New lithium-oxygen battery greatly improves energy efficiency, longevity: New chemistry could overcome key drawbacks of lithium-air batteries July 26th, 2016

Scientists test nanoparticle drug delivery in dogs with osteosarcoma July 26th, 2016

Nanometrics Reports Second Quarter 2016 Financial Results July 26th, 2016

Ultrasensitive sensor using N-doped graphene July 26th, 2016

Photonics/Optics/Lasers

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

RMIT researchers make leap in measuring quantum states July 21st, 2016

The birth of quantum holography: Making holograms of single light particles! July 21st, 2016

Graphene photodetectors: Thinking outside the 2-D box July 21st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic