Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Imec reports asymmetric nanostructures for early and more accurate prediction of cancer

Abstract:
Researchers at the nanotechnology research centre imec (Leuven, Belgium) have demonstrated biosensors based on novel nanostructure geometries that increase the sensitivity and allow to detect extremely low concentrations of specific disease markers. This paves the way to early diagnostics of for example cancer by detecting low densities of cancer markers in human blood samples.

Imec reports asymmetric nanostructures for early and more accurate prediction of cancer

Tech Connect World, Anaheim, CA | Posted on June 24th, 2010

Functionalized nanoparticles can identify and measure extremely low concentrations of specific molecules. They enable the realization of diagnostic systems with increased sensitivity, specificity and reliability resulting in a better and more cost-efficient healthcare. And, going one step further, functionalized nanoparticles can help treat diseases, by destroying the diseased cells that the nanoparticles bind to.

Imec aims at developing biosensor systems exploiting a phenomenon known as localized surface plasmon resonance in noble metal (e.g. gold and silver) nanostructures. The biosensors are based on optical detection of a change in spectral response of the nanostructures upon binding a disease marker. The detection sensitivity can be increased by changing the morphology and size of the noble metal nanostructures. The biosensor system is cheap and easily extendable to multiparameter biosensing. Imec today presents broken symmetry gold nanostructures that combine nanorings with nanodiscs. Combining different nanostructures in close proximity allows detailed engineering of the plasmon resonance of the nanostructures. More specifically, imec targeted an optimization of both the width of the resonance peak and the resonance shift upon binding of the disease marker. With respect to these parameters, the new geometries clearly outperform the traditional nanospheres. Therefore, they are better suited for practical use in sensitive biosensor systems.

"With our bio-nano research, we aim at playing an important role in developing powerful healthcare diagnostics and therapy. We work on innovative instruments to support the research into diseases and we look into portable technologies that can diagnose diseases at an early stage. We want to help the pharmaceutical and diagnostic industry with instruments to develop diagnostic tests and therapies more efficiently" said Prof. Liesbet Lagae, program manager HUMAN++ on biomolecular interfacing technology.

Some of these results were achieved in collaboration with the Catholic University of Leuven (Leuven, Belgium), Imperial College (London, UK) and Rice University (Houston, Texas).

####

About imec
Imec performs world-leading research in nano-electronics. Imec leverages its scientific knowledge with the innovative power of its global partnerships in ICT, healthcare and energy. Imec delivers industry-relevant technology solutions. In a unique high-tech environment, its international top talent is committed to providing the building blocks for a better life in a sustainable society.

Imec is headquartered in Leuven, Belgium, and has offices in Belgium, the Netherlands, Taiwan, US, China and Japan. Its staff of more than 1,750 people includes over 550 industrial residents and guest researchers. In 2009, imec's revenue (P&L) was 275 million euro.

Further information on imec can be found at www.imec.be

Imec is a registered trademark for the activities of IMEC International (a legal entity set up under Belgian law as a "stichting van openbaar nut”), imec Belgium (imec vzw supported by the Flemish Government), imec the Netherlands (Stichting imec Nederland, part of Holst Centre which is supported by the Dutch Government) and imec Taiwan (imec Taiwan Co.).

For more information, please click here

Contacts:
Katrien Marent, Director of External Communications, T: +32 16 28 18 80, Mobile: +32 474 30 28 66,

Barbara Kalkis, Maestro Marketing & PR, T: +1 408 996 9975,

Copyright © imec

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Nanomedicine

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Sensors

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Announcements

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Events/Classes

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

FRITSCH • Milling and Sizing! Innovations at POWTECH 2017 - Hall 2 • Stand 227 August 9th, 2017

Thermo Fisher Scientific Showcases Innovations in Electron Microscopy and Spectroscopy at M&M 2017: New analytical technologies improve workflows for life sciences and materials science researchers August 8th, 2017

Nanometrics Announces Upcoming Investor Events August 3rd, 2017

Nanobiotechnology

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Research partnerships

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project