Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Rensselaer Polytechnic Institute Researchers Develop Ultra-Simple Method for Creating Nanoscale Gold Coatings

Researchers at Rensselaer have developed a new, ultra-simple method for making layers of gold that measure only billionths of a meter thick. As seen in the research image, drops of gold-infused toluene applied to a surface evaporate within a few minutes and leave behind a uniform layer of nanoscale gold. The process requires no sophisticated equipment, works on nearly any surface, takes only 10 minutes, and could have important implications for nanoelectronics and semiconductor manufacturing.
Researchers at Rensselaer have developed a new, ultra-simple method for making layers of gold that measure only billionths of a meter thick. As seen in the research image, drops of gold-infused toluene applied to a surface evaporate within a few minutes and leave behind a uniform layer of nanoscale gold. The process requires no sophisticated equipment, works on nearly any surface, takes only 10 minutes, and could have important implications for nanoelectronics and semiconductor manufacturing.

Abstract:
Study Details New Process for Creating Monolayers of Gold Nanoparticles; Holds Promise for New Nanoelectronics Applications

Rensselaer Polytechnic Institute Researchers Develop Ultra-Simple Method for Creating Nanoscale Gold Coatings

Troy, NY | Posted on June 23rd, 2010

Researchers at Rensselaer Polytechnic Institute have developed a new, ultra-simple method for making layers of gold that measure only billionths of a meter thick. The process, which requires no sophisticated equipment and works on nearly any surface including silicon wafers, could have important implications for nanoelectronics and semiconductor manufacturing.

Sang-Kee Eah, assistant professor in the Department of Physics, Applied Physics, and Astronomy at Rensselaer, and graduate student Matthew N. Martin infused liquid toluene — a common industrial solvent - with gold nanoparticles. The nanoparticles form a flat, closely packed layer of gold on the surface of the liquid where it meets air. By putting a droplet of this gold-infused liquid on a surface, and waiting for the toluene to evaporate, the researchers were able to successfully coat many different surfaces - including a 3-inch silicon wafer — with a monolayer of gold nanoparticles.

"There has been tremendous progress in recent years in the chemical syntheses of colloidal nanoparticles. However, fabricating a monolayer film of nanoparticles that is spatially uniform at all length scales — from nanometers to millimeters — still proves to be quite a challenge," Eah said. "We hope our new ultra-simple method for creating monolayers will inspire the imagination of other scientists and engineers for ever-widening applications of gold nanoparticles."

Watch a video of this new fabrication process at: www.youtube.com/watch?v=nqkwM9o1s-w

Results of the study, titled "Charged gold nanoparticles in non-polar solvents: 10-min synthesis and 2-D self-assembly," were published recently in the journal Langmuir. Read the journal paper at: dx.doi.org/10.1021/la100591h

Whereas other synthesis methods take several hours, this new method chemically synthesizes gold nanoparticles in only 10 minutes without the need for any post-synthesis cleaning, Eah said. In addition, gold nanoparticles created this way have the special property of being charged on non-polar solvents for 2-D self-assembly.

Previously, the 2-D self-assembly of gold nanoparticles in a toluene droplet was reported with excess ligands, which slows down and complicates the self-assembly process. This required the non-volatile excess ligands to be removed in a vacuum. In contrast, Eah's new method ensures that gold nanoparticles float to the surface of the toluene drop in less than one second, without the need for a vacuum. It then takes only a few minutes for the toluene droplet to evaporate and leave behind the gold monoloayer.

"The extension of this droplet 2-D self-assembly method to other kinds of nanoparticles, such as magnetic and semiconducting particles, is challenging but holds much potential," Eah said. "Monolayer films of magnetic nanoparticles, for instance, are important for magnetic data storage applications. Our new method may be able to help inform new and exciting applications."

Co-authors on the paper are former Rensselaer undergraduate researchers James I. Basham '07, who is now a graduate student at Pennsylvania State University, and Paul Chando '09, who will begin graduate study in the fall at the City College of New York.

The research project was supported by Rensselaer, the Rensselaer Summer Undergraduate Research Program, the National Science Foundation (NSF) Research Experiences for Undergraduates, and the NSF's East Asia and Pacific Summer Institutes and Japan Society for the Promotion of Science.

For more information, visit Eah's website at: www.rpi.edu/~eahs.

####

For more information, please click here

Contacts:
Michael Mullaney
(518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK announces expansion of its global sales and service activities in China and USA April 15th, 2014

Nanobiotix Appoints Thierry Otin as Head of Manufacturing and Supply April 15th, 2014

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Engineers develop new materials for hydrogen storage April 15th, 2014

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Possible Futures

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Surface Characteristics Influence Cellular Growth on Semiconductor Material March 12th, 2014

The "Tipping Point" February 12th, 2014

Chip Technology

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

Obducat has launched a new generation of SINDRE® Nano Imprint production system April 11th, 2014

Scientists in Singapore develop novel ultra-fast electrical circuits using light-generated tunneling currents April 10th, 2014

Clean Shot at Manufacturing Course…For Less April 9th, 2014

Self Assembly

Roomy cages built from DNA: Self-assembling cages are the largest standalone 3-D DNA structures yet, and could one day deliver drugs, or house tiny bioreactors or photonic devices March 13th, 2014

Cypress’s TrueTouch® Touchscreen Controllers Compatible with Cima NanoTech’s SANTE® Silver Nanoparticle-Based Touch Sensors: Supporting Designs for Advanced Touch Applications March 5th, 2014

Coupled carbon and peptide nanotubes achieved for the first time: twins nanotubes March 1st, 2014

A potentially revolutionnary material: Scientists produce a novel form of artificial graphene February 15th, 2014

Nanoelectronics

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Catching the (Invisible) Wave: UC Santa Barbara researchers create a unique semiconductor that manipulates light in the invisible infrared/terahertz range, paving the way for new and enhanced applications April 11th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Preview of Hands-on Nanotechnology Demos at ‘Chemistry of Wine’ Fundraiser to Show Nanotech Magic April 8th, 2014

Announcements

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun — even when it’s not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE