Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Build it Like Mother Nature

In a step toward creating adhesives, drug delivery systems and other useful tools, Wyss Institute researchers led by Joanna Aizenberg have synthesized nanobristles that self-assemble into helical shapes,which are ubiquitous in nature.
In a step toward creating adhesives, drug delivery systems and other useful tools, Wyss Institute researchers led by Joanna Aizenberg have synthesized nanobristles that self-assemble into helical shapes,which are ubiquitous in nature.

Abstract:
Frank Lloyd Wright knew nature could teach architects a thing or two. Inspired by the contours of the landscape, Wright designed buildings with organic forms. With a similar philosophy, researchers are charting a new course in medicine through the Wyss Institute for Biologically Inspired Engineering, launched in 2009 with the largest philanthropic gift to Harvard in the University's history -- $125 million -- from engineer-entrepreneur Hansjorg Wyss.

Build it Like Mother Nature

Cambridge, MA | Posted on June 22nd, 2010

The Institute brings together researchers and clinicians from Harvard's Medical School and School of Engineering and Applied Sciences (SEAS), its affiliated hospitals and nearby institutions, and provides them with funding, space, and expert technical assistance to build on revolutionary advances in engineering, nanotechnology, synthetic biology, and computer science. Although their ideas carry a high risk of failure, they also have the potential to yield big dividends for human health.

"We're adopting the same simple, ingenious design principles that nature uses to create new medical devices and biomaterials," says Donald Ingber, the Institute's founding director and an HMS professor of pathology at Children's Hospital Boston.

Wyss teams discard stale patterns of thought by embracing strategies living systems use to adapt and compete for survival. Some of these tactics run counter to what scientists and engineers learn during their formal training. Take nature's approach to noise.

"Nature harnesses noise instead of trying to minimize it," says Ingber, using natural selection to illustrate his point. Genetic noise -- in the form of random DNA mutations -- produces populations of cells with slightly differing DNA blueprints and traits.

Electrical engineers despise noise and strive to eliminate it from equipment, from radio transmitters to lasers. Wyss researchers recognize that the human body bears little resemblance to a cool, quiet room for computer servers. This complex multi-cellular organism instead resembles an experimental polyrhythmic symphony in which the musicians work from their own scores, yet are flexible enough to improvise.

Relying on insights from nature may enable Wyss researchers to innovate where others have failed. Take tissue engineering: Instead of working in a petri dish, a team led by Ingber etched three-dimensional channels into a flexible, translucent cube and filled them with cells to recreate key structures found in the lung. The resulting "lung on a chip" expands and contracts rhythmically. It breathes. "We could never have achieved this necessary level of complexity in a dish," Ingber says. He hopes this and other tiny organ surrogates will provide an alternative to animal models. "We're not interested in making incremental improvements to existing materials and devices," he declares. "We're trying to shift paradigms."

Another Wyss team is developing an assistive device for children with cerebral palsy and other forms of brain injury that isn't stiff and awkward like a leg brace but instead is as soft and lightweight as clothing.

With seed funding from the Wyss, Eugene Goldfield, an HMS assistant professor of psychology at Children's Hospital Boston, is designing a programmable "second skin" to re-educate an injured nervous system. The skin will be made of many tiny "smart agents" that sense movement and then collaborate with patients' leg muscles to help them move.

"Without prompting from Don Ingber, I probably would have fumbled along on my own for a long time," says Goldfield. "Don realized it was important for me to connect with robotics experts, so he showed up one day and offered me a ride over to the School of Engineering and Applied Sciences." There, Goldfield met SEAS Associate Professor of Computer Science Radhika Nagpal, who is interested in robotic systems that adapt like living systems. Her group has created a self-balancing table composed of 12 identical robots that cooperate without guidance from a leader, responding to disturbances to keep the table level.

For help in mimicking nature's principle of self-organization, Nagpal and Goldfield turned to Harvard Microrobotics Laboratory founder and SEAS professor Robert Wood. Wood brings to the project new force-generating lightweight materials that he uses to make insect robots fly.

"We need each other desperately," says Nagpal of the trio's shared vision, which has drawn them out of their comfort zones. That is, after all, what the Wyss Institute is about: moving bold ideas through a discovery phase to the point where they capture interest -- and funding -- from government or industry.

####

About Wyss Institute for Biologically Inspired Engineering
The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses nature’s design principles to create breakthrough technologies that will revolutionize medicine, industry and the environment. Working as an alliance among Harvard’s Medical School, School of Engineering and Applied Sciences, and Faculty of Arts and Sciences, and in partnership with Beth Israel Deaconess Medical Center, Children’s Hospital Boston, Dana-Farber Cancer Institute, University of Massachusetts Medical School and Boston University, the Institute crosses disciplinary and institutional barriers to engage in high-risk, fundamental research that leads to transformative change. By applying biological principles, Wyss researchers are developing innovative new engineering solutions for healthcare, manufacturing, robotics, energy and sustainable architecture. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances and new startups.

For more information, please click here

Copyright © Wyss Institute for Biologically Inspired Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Chemists make new silicon-based nanomaterials March 27th, 2015

UT Dallas engineers twist nanofibers to create structures tougher than bulletproof vests March 27th, 2015

Synthetic Biology

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

New tool could help reshape the limits of synthetic biology: The 'telomerator' reshapes synthetic yeast chromosome into more flexible, realistic form, redefining what geneticists can build November 3rd, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Smallest world record has 'endless possibilities' for bio-nanotechnology October 8th, 2014

Academic/Education

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

FEI Joins University of Ulm and CEOS on SALVE Project Research Collaboration: The Sub-Ångström Low Voltage Electron (SALVE) microscope should improve contrast and reduce damage on bio-molecules and two-dimensional nanomaterials, such as graphene March 18th, 2015

Nanomedicine

Novel nanoparticle therapy promotes wound healing March 27th, 2015

Graphene reduces wear of alumina ceramic March 26th, 2015

Application of Graphene Oxide in Body Implants in Iran March 26th, 2015

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Announcements

A first glimpse inside a macroscopic quantum state March 28th, 2015

DFG to Establish One Clinical Research Unit and Five Research Units: New Projects to Investigate Complications in Pregnancy, Particle Physics, Nanoparticles, Implants and Transport Planning / Approximately 13 Million Euros in Funding for an Initial Three-Year Period March 28th, 2015

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Using magnetic fields to understand high-temperature superconductivity: Los Alamos explores experimental path to potential 'next theory of superconductivity' March 27th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

FEI Technology Award of the German Neuroscience Society Goes to Benjamin Judkewitz of the University of Berlin: Bi-annual award honors excellence in brain research during the German Neuroscience Society’s Annual Meeting, held 18-21 March 2015 March 26th, 2015

FEI Announces Image Contest Grand Prize Winner: Francisco Rangel of the National Institute of Technology, INT/MCTI, Brazil, wins the contest with his “Expanded Vermiculite” image March 23rd, 2015

Halas, Nordlander awarded Optical Society's R.W. Wood Prize: Rice University researchers recognized for pioneering nanophotonics March 21st, 2015

Hiden Instruments identified in London Stock Exchange’s ‘1000 Companies to Inspire Britain' March 21st, 2015

Nanobiotechnology

Designer's toolkit for dynamic DNA nanomachines: Arm-waving nanorobot signals new flexibility in DNA origami March 27th, 2015

Dolomite’s microfluidics technology ideal for B cell encapsulation March 24th, 2015

Tiny bio-robot is a germ suited-up with graphene quantum dots March 24th, 2015

TGAC's take on the first portable DNA sequencing 'laboratory': First remote laboratory allows researchers to conduct real-time anaylsis March 19th, 2015

Research partnerships

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

ORNL-led team demonstrates desalination with nanoporous graphene membrane March 25th, 2015

New kind of 'tandem' solar cell developed: Researchers combine 2 types of photovoltaic material to make a cell that harnesses more sunlight March 24th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE