Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Build it Like Mother Nature

In a step toward creating adhesives, drug delivery systems and other useful tools, Wyss Institute researchers led by Joanna Aizenberg have synthesized nanobristles that self-assemble into helical shapes,which are ubiquitous in nature.
In a step toward creating adhesives, drug delivery systems and other useful tools, Wyss Institute researchers led by Joanna Aizenberg have synthesized nanobristles that self-assemble into helical shapes,which are ubiquitous in nature.

Abstract:
Frank Lloyd Wright knew nature could teach architects a thing or two. Inspired by the contours of the landscape, Wright designed buildings with organic forms. With a similar philosophy, researchers are charting a new course in medicine through the Wyss Institute for Biologically Inspired Engineering, launched in 2009 with the largest philanthropic gift to Harvard in the University's history -- $125 million -- from engineer-entrepreneur Hansjorg Wyss.

Build it Like Mother Nature

Cambridge, MA | Posted on June 22nd, 2010

The Institute brings together researchers and clinicians from Harvard's Medical School and School of Engineering and Applied Sciences (SEAS), its affiliated hospitals and nearby institutions, and provides them with funding, space, and expert technical assistance to build on revolutionary advances in engineering, nanotechnology, synthetic biology, and computer science. Although their ideas carry a high risk of failure, they also have the potential to yield big dividends for human health.

"We're adopting the same simple, ingenious design principles that nature uses to create new medical devices and biomaterials," says Donald Ingber, the Institute's founding director and an HMS professor of pathology at Children's Hospital Boston.

Wyss teams discard stale patterns of thought by embracing strategies living systems use to adapt and compete for survival. Some of these tactics run counter to what scientists and engineers learn during their formal training. Take nature's approach to noise.

"Nature harnesses noise instead of trying to minimize it," says Ingber, using natural selection to illustrate his point. Genetic noise -- in the form of random DNA mutations -- produces populations of cells with slightly differing DNA blueprints and traits.

Electrical engineers despise noise and strive to eliminate it from equipment, from radio transmitters to lasers. Wyss researchers recognize that the human body bears little resemblance to a cool, quiet room for computer servers. This complex multi-cellular organism instead resembles an experimental polyrhythmic symphony in which the musicians work from their own scores, yet are flexible enough to improvise.

Relying on insights from nature may enable Wyss researchers to innovate where others have failed. Take tissue engineering: Instead of working in a petri dish, a team led by Ingber etched three-dimensional channels into a flexible, translucent cube and filled them with cells to recreate key structures found in the lung. The resulting "lung on a chip" expands and contracts rhythmically. It breathes. "We could never have achieved this necessary level of complexity in a dish," Ingber says. He hopes this and other tiny organ surrogates will provide an alternative to animal models. "We're not interested in making incremental improvements to existing materials and devices," he declares. "We're trying to shift paradigms."

Another Wyss team is developing an assistive device for children with cerebral palsy and other forms of brain injury that isn't stiff and awkward like a leg brace but instead is as soft and lightweight as clothing.

With seed funding from the Wyss, Eugene Goldfield, an HMS assistant professor of psychology at Children's Hospital Boston, is designing a programmable "second skin" to re-educate an injured nervous system. The skin will be made of many tiny "smart agents" that sense movement and then collaborate with patients' leg muscles to help them move.

"Without prompting from Don Ingber, I probably would have fumbled along on my own for a long time," says Goldfield. "Don realized it was important for me to connect with robotics experts, so he showed up one day and offered me a ride over to the School of Engineering and Applied Sciences." There, Goldfield met SEAS Associate Professor of Computer Science Radhika Nagpal, who is interested in robotic systems that adapt like living systems. Her group has created a self-balancing table composed of 12 identical robots that cooperate without guidance from a leader, responding to disturbances to keep the table level.

For help in mimicking nature's principle of self-organization, Nagpal and Goldfield turned to Harvard Microrobotics Laboratory founder and SEAS professor Robert Wood. Wood brings to the project new force-generating lightweight materials that he uses to make insect robots fly.

"We need each other desperately," says Nagpal of the trio's shared vision, which has drawn them out of their comfort zones. That is, after all, what the Wyss Institute is about: moving bold ideas through a discovery phase to the point where they capture interest -- and funding -- from government or industry.

####

About Wyss Institute for Biologically Inspired Engineering
The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses nature’s design principles to create breakthrough technologies that will revolutionize medicine, industry and the environment. Working as an alliance among Harvard’s Medical School, School of Engineering and Applied Sciences, and Faculty of Arts and Sciences, and in partnership with Beth Israel Deaconess Medical Center, Children’s Hospital Boston, Dana-Farber Cancer Institute, University of Massachusetts Medical School and Boston University, the Institute crosses disciplinary and institutional barriers to engage in high-risk, fundamental research that leads to transformative change. By applying biological principles, Wyss researchers are developing innovative new engineering solutions for healthcare, manufacturing, robotics, energy and sustainable architecture. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances and new startups.

For more information, please click here

Copyright © Wyss Institute for Biologically Inspired Engineering

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Synthetic Biology

Scientists Create Synthetic Membranes That Grow Like Living Cells June 22nd, 2015

$8.5M Grant For Developing Nano Printing Technology: 4-D printing to advance chemistry, materials sciences and defense capabilities June 18th, 2015

How natural channel proteins move in artificial membranes June 3rd, 2015

Researchers of the University of Tartu create a centre for developing designer cells with new functions April 8th, 2015

Academic/Education

Oxford Instruments’ TritonXL Cryofree dilution refrigerator selected for the Oxford NQIT Quantum Technology Hub project June 30th, 2015

Rice University boots up powerful microscopes: New electron microscopes will capture images at subnanometer resolution June 29th, 2015

Six top Catalan research centres constitute ‘The Barcelona Institute of Science and Technology’ to pursue a joint scientific endeavour June 27th, 2015

Lancaster University revolutionary quantum technology research receives funding boost June 22nd, 2015

Nanomedicine

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Iranian Scientists Find Simple, Economic Method to Synthesize Antibacterial Nanoparticles July 2nd, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Announcements

A 'movie' of ultrafast rotating molecules at a hundred billion per second: A quantum wave-like nature was successfully observed in rotating nitrogen molecules July 4th, 2015

New Biosensor Produced in Iran to Detect Effective Drugs in Cancer Treatment July 4th, 2015

Clues to inner atomic life from subtle light-emission shifts: Hyperfine structure of light absorption by short-lived cadmium atom isotopes reveals characteristics of the nucleus that matter for high precision detection methods July 3rd, 2015

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Pioneering Southampton scientist awarded prestigious physics medal July 3rd, 2015

Discovery of nanotubes offers new clues about cell-to-cell communication July 2nd, 2015

World’s 1st Full-Color, Flexible, Skin-Like Display Developed at UCF June 24th, 2015

Physicists fine-tune control of agile exotic materials: Tunable hybrid polaritons realized with graphene layer on hexagonal boron nitride June 24th, 2015

Nanobiotechnology

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Engineering the world’s smallest nanocrystal July 2nd, 2015

Nanometric sensor designed to detect herbicides can help diagnose multiple sclerosis June 23rd, 2015

Newly-Developed Biosensor in Iran Detects Cocaine Addiction June 23rd, 2015

Research partnerships

Groundbreaking research to help control liquids at micro and nano scales July 3rd, 2015

Producing spin-entangled electrons July 2nd, 2015

Harris & Harris Group Portfolio Company, AgBiome, Announces Partnership to Accelerate the Discovery of Next Generation Insect-Resistant Crops July 1st, 2015

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project