Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Imec reports breakthrough for next-generation vertical Flash memories

Figure Vertical Flash transistor: Program/erase characteristics on a vertical charge trap Flash cell with poly-Si substrate and corresponding cross-section
Figure Vertical Flash transistor: Program/erase characteristics on a vertical charge trap Flash cell with poly-Si substrate and corresponding cross-section

Abstract:
Imec realized a vertical Flash transistor with Si plug diameters down to 20nm. The associated vertical Flash platform paves the way to scale Flash memory to the next nodes. The vertical device concept features enhanced performance at lower voltages as well as reduced cost.

Imec reports breakthrough for next-generation vertical Flash memories

Belgium | Posted on June 22nd, 2010

Floating gate Flash memory has been scaling at a tremendous pace in recent years to arrive at a startling density of 32 gigabit (4 gigabyte) on a single die today, using 30nm technology and below. Drastic device concept changes are however required for future generations to cope with the scaling limits of today's floating gate technology. For example the electrostatic cell-to-cell interference and the low storage electron count are becoming major obstacles for further downscaling in the 20 and 10nm range.

Stacking cells in a vertical way on a chip, hence increasing the density per unit area by e.g. 8-16 for the same technology node, is a very promising approach to further push the cost down. Besides cost reduction, vertical stacking also improves the gate control and the field enhancement in the tunnel oxide because of the curvature of the gate-all-around structure. This leads to enhanced window and drive current even in the case of a poly-Si SONOS (silicon oxide nitride oxide silicon) device.

Imec designed a new process flow and all necessary test structures to optimize the vertical transistor flow. The process flow provides a gate layer and inter-gate isolation layers, which are etched all the way down to the Si (to form the so-called ‘plug'). Next, the ONO (oxide nitride oxide) memory gate stack is deposited on the sidewalls and the plug is filled with poly-Si which serves as the transistor substrate.
Plug opening, bottom junction as well as top junction profile and plug fill were found to be critical steps. Cylindrical cell structures have been obtained with Si diameters down to 20nm. A new process has been developed to allow the removal of the ONO stack at the bottom of the plug for source junction formation without damaging the tunnel oxide on the sidewalls.

Imec's vertical Flash transistor platform will be used to investigate the scalability of this concept for the generations corresponding to the planar 1x nodes. Further experiments will include the reduction of the cell diameter, the selection of the best ONO stack taking topography into account as well as alternative channel processing schemes.

These results were obtained in collaboration with imec's key partners in sub-22nm core CMOS research.

####

About imec
Imec is Europe’s largest independent research center in nanoelectronics and nano-technology. Its staff of more than 1,750 people includes over 550 industrial residents and guest researchers. Imec’s research is applied in better healthcare, smart electronics, sustainable energy, and safer transport.

For more information, please click here

Contacts:
Kapeldreef 75
B-3001 Leuven
Belgium

Phone: +32 16 28 12 11
Fax: +32 16 22 94 00

Copyright © imec

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

Display technology/LEDs/SS Lighting/OLEDs

Trace metal recombination centers kill LED efficiency: UCSB researchers warn that trace amounts of transition metal impurities act as recombination centers in gallium nitride semiconductors November 3rd, 2016

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

Researchers surprised at the unexpected hardness of gallium nitride: A Lehigh University team discovers that the widely used semiconducting material is almost as wear-resistant as diamonds October 31st, 2016

Inspiration from the ocean: An interdisciplinary team of researchers at UC Santa Barbara has developed a non-toxic, high-quality surface treatment for organic field-effect transistors October 18th, 2016

Chip Technology

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Tokyo Institute of Technology research: 3D solutions to energy savings in silicon power transistors December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Memory Technology

New technology of ultrahigh density optical storage researched at Kazan University: The ever-growing demand for storage devices stimulates scientists to find new ways of improving the performance of existing technologies November 30th, 2016

A Tiny Machine: UCSB electrical and computer engineers design an infinitesimal computing device October 28th, 2016

How nanoscience will improve our health and lives in the coming years: Targeted medicine deliveries and increased energy efficiency are just two of many ways October 26th, 2016

Making the switch, this time with an insulator: Colorado State University physicists, joining the fundamental pursuit of using electron spins to store and manipulate information, have demonstrated a new approach to doing so, which could prove useful in the application of low-powe September 2nd, 2016

Nanoelectronics

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Leti IEDM 2016 Paper Clarifies Correlation between Endurance, Window Margin and Retention in RRAM for First Time: Paper Presented at IEDM 2016 Offers Ways to Reconcile High-cycling Requirements and Instability at High Temperatures in Resistive RAM December 6th, 2016

Physicists decipher electronic properties of materials in work that may change transistors December 6th, 2016

Journal Nanotechnology Progress International (JONPI) Volume 6, issue 2 coming out soon! December 5th, 2016

Announcements

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Exotic insulator may hold clue to key mystery of modern physics: Johns Hopkins-led research shows material living between classical and quantum worlds December 8th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project