Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > University of Minnesota researchers clear major hurdle in road to high-efficiency solar cells

U of M researchers have cleared a major hurdle in the drive to build solar cells with potential efficiencies up to twice as high as current levels.
U of M researchers have cleared a major hurdle in the drive to build solar cells with potential efficiencies up to twice as high as current levels.

Abstract:
A team of University of Minnesota-led researchers has cleared a major hurdle in the drive to build solar cells with potential efficiencies up to twice as high as current levels, which rarely exceed 30 percent.

University of Minnesota researchers clear major hurdle in road to high-efficiency solar cells

Minneapolis / St. Paul, MN | Posted on June 18th, 2010

By showing how energy that is now being lost from semiconductors in solar cells can be captured and transferred to electric circuits, the team has opened a new avenue for solar cell researchers seeking to build cheaper, more efficient solar energy devices. The work is published in this week's Science.

A system built on the research could also slash the cost of manufacturing solar cells by removing the need to process them at very high temperatures.

The achievement crowns six years of work begun at the university Institute of Technology (College of Science and Engineering) chemical engineering and materials science professors Eray Aydil and David Norris and chemistry professor Xiaoyang Zhu (now at the university of Texas-Austin) and spearheaded by U of M graduate student William Tisdale.

In most solar cells now in use, rays from the sun strike the uppermost layer of the cells, which is made of a crystalline semiconductor substance—usually silicon. The problem is that many electrons in the silicon absorb excess amounts of solar energy and radiate that energy away as heat before it can be harnessed.

An early step in harnessing that energy is to transfer these "hot" electrons out of the semiconductor and into a wire, or electric circuit, before they can cool off. But efforts to extract hot electrons from traditional silicon semiconductors have not succeeded.

However, when semiconductors are constructed in small pieces only a few nanometers wide -- "quantum dots" -- their properties change.

"Theory says that quantum dots should slow the loss of energy as heat," said Tisdale. "And a 2008 paper from the University of Chicago showed this to be true. The big question for us was whether we could also speed up the extraction and transfer of hot electrons enough to grab them before they cooled. "

In the current work, Tisdale and his colleagues demonstrated that quantum dots—made not of silicon but of another semiconductor called lead selenide -- could indeed be made to surrender their "hot" electrons before they cooled. The electrons were pulled away by titanium dioxide, another common inexpensive and abundant semiconductor material that behaves like a wire.

"This is a very promising result," said Tisdale. "We've shown that you can pull hot electrons out very quickly - before they lose their energy. This is exciting fundamental science."

The work shows that the potential for building solar cells with efficiencies approaching 66 percent exists, according to Aydil.

"This work is a necessary but not sufficient step for building very high-efficiency solar cells," he said. "It provides a motivation for researchers to work on quantum dots and solar cells based on quantum dots."

The next step is to construct solar cells with quantum dots and study them. But one big problem still remains: "Hot" electrons also lose their energy in titanium dioxide. New solar cell designs will be needed to eliminate this loss, the researchers said.

Still, "I'm comfortable saying that electricity from solar cells is going to be a large fraction of our energy supply in the future," Aydil noted.

The research was funded primarily by the U.S. Department of Energy and partially by the National Science Foundation. Other authors of the paper were Brooke Timp from the University of Minnesota and Kenrick Williams from UT-Austin.

####

For more information, please click here

Contacts:
Preston Smith
University News Service

612-625-0552

Copyright © University of Minnesota

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Nanomaterials In Cosmetic And Personal Care Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

European Technology Platform for Nanomedicine and ENATRANS European Consortium Launch the 2nd edition of the Nanomedicine Award: The Award to be presented at BIO-Europe conference in Munich, November 2015 July 30th, 2015

Take a trip through the brain July 30th, 2015

Possible Futures

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Researchers predict material with record-setting melting point July 27th, 2015

Global Corrosion Resistant Nano Coatings Market To 2015: Acute Market Reports July 27th, 2015

Academic/Education

Pakistani Students Who Survived Terror Attack to Attend Weeklong “NanoDiscovery Institute” at SUNY Poly CNSE in Albany July 29th, 2015

Deben reports on the use of their CT500 in the X-ray microtomography laboratory at La Trobe University, Melbourne, Australia July 22nd, 2015

JPK reports on the use of SPM in the Messersmith Group at UC Berkeley looking at biologically inspired polymer adhesives. July 21st, 2015

Renishaw adds Raman analysis to Scanning Electron Microscopy at the University of Sydney, Australia July 9th, 2015

Announcements

Heating and cooling with light leads to ultrafast DNA diagnostics July 31st, 2015

Theoretical Physicists at Freie Universität Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Nanomaterials In Cosmetic And Personal Care Market 2015 - Global Industry Survey, Analysis, Size, Share, Outlook and Forecast to 2020 July 31st, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

Energy

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Smaller, faster, cheaper: A new type of modulator for the future of data transmission July 27th, 2015

Quantum Dots/Rods

Quantum networks: Back and forth are not equal distances! July 28th, 2015

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Engineered hybrid crystal opens new frontiers for high-efficiency lighting: University of Toronto researchers successfully combine 2 different materials to create new hyper-efficient light-emitting crystal July 16th, 2015

Down to the quantum dot: Jülich researchers develop ultrahigh-resolution 3-D microscopy technique for electric fields July 7th, 2015

Research partnerships

Newly-Developed Polymers Control Size of Nanoparticles during Production Process July 30th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

Stretching the limits on conducting wires July 25th, 2015

Solar/Photovoltaic

Springer and Tsinghua University Press present the second Nano Research Award: Paul Alivisatos of the University of California Berkeley receives the honor for outstanding contributions in nanoscience July 30th, 2015

Reshaping the solar spectrum to turn light to electricity: UC Riverside researchers find a way to use the infrared region of the sun's spectrum to make solar cells more efficient July 27th, 2015

Rice University finding could lead to cheap, efficient metal-based solar cells: Plasmonics study suggests how to maximize production of 'hot electrons' July 22nd, 2015

Perovskite solar technology shows quick energy returns: New technology beats current solar panel technology in life-cycle energy assessment July 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project