Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Silicon chips to enter world of high speed optical processing

An on-chip all-optical integrator under operation
An on-chip all-optical integrator under operation

Abstract:
Physicists at the University of Sydney have brought silicon chips closer to performing all-optical computing and information processing that could overcome the speed limitations intrinsic to electronics, with the first report published of an on-chip all-optical temporal integrator in Nature Communications today.

Silicon chips to enter world of high speed optical processing

Sydney | Posted on June 18th, 2010

An all-optical integrator, or lightwave capacitor, is a fundamental building block equivalent to those used in multi-functional electronic circuits.

Associate Professor David Moss, a senior researcher within the Institute for Photonic and Optical Science (IPOS), leads an international team which has developed the optical integrator on a CMOS compatible silicon chip.

The device, a photonic chip compatible with electronic technology (CMOS), will be a key enabler of next generation fully-integrated ultrafast optical data processing technologies for many applications including ultra-fast optical information-processing, optical memory, measurement, computing systems, and real-time differential equation computing units.

It is based on a passive micro-ring resonator and performs the time integral of an arbitrary optical waveform with a time resolution of a few picoseconds, corresponding to a processing speed of around 200 GHz, and with a "hold" time approaching a nanosecond.

This represents an unprecedented processing time-bandwidth product (TBP) - a principal figure of merit, defined as the ratio between the integration time window to the fastest time feature that can be accurately processed - approaching 100 - much higher than advanced passive electronic integrators where the TBP is less than 10.

The research has just been published in a paper entitled On-chip CMOS compatible all-optical integrator in the international journal, Nature Communications.

Associate Professor Moss said using light for ultrahigh speed information processing, computing, and storage on a silicon chip was an important breakthrough.

"With society's demands for even faster technology, ultrafast optical computing and signal processing are important," he said.

"This on-chip optical integrator is a key to enabling many optical functions on a chip, including ultra high speed signal processing, computing, and optical memory.

"This technology will ultimately provide the consumer with cheaper and faster computers."

The device, based on high index doped silica glass, is low loss and has a high degree of manufacturability and design flexibility. This makes it an ideal ultrahigh speed optical integrator with a performance good enough not just for optical computing but for a wide range of applications including optical memory, real-time differential equation computing units, and many others.

Associate Professor Moss is a researcher with the Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), an ARC Centre of Excellence.

####

For more information, please click here

Contacts:
Media enquiries
Rachel Gleeson
0403 067 342, 9351 4312,

Copyright © University of Sydney

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Synthesize Stable Ceramic Nanopowders at Room Temperature September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Chip Technology

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Optical Computing

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

Atomically thin material opens door for integrated nanophotonic circuits September 4th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Nanoelectronics

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Announcements

Iranian Scientists Separate Zinc Ion at Low Concentrations September 20th, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Toward optical chips: A promising light source for optoelectronic chips can be tuned to different frequencies September 19th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE