Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Silicon chips to enter world of high speed optical processing

An on-chip all-optical integrator under operation
An on-chip all-optical integrator under operation

Abstract:
Physicists at the University of Sydney have brought silicon chips closer to performing all-optical computing and information processing that could overcome the speed limitations intrinsic to electronics, with the first report published of an on-chip all-optical temporal integrator in Nature Communications today.

Silicon chips to enter world of high speed optical processing

Sydney | Posted on June 18th, 2010

An all-optical integrator, or lightwave capacitor, is a fundamental building block equivalent to those used in multi-functional electronic circuits.

Associate Professor David Moss, a senior researcher within the Institute for Photonic and Optical Science (IPOS), leads an international team which has developed the optical integrator on a CMOS compatible silicon chip.

The device, a photonic chip compatible with electronic technology (CMOS), will be a key enabler of next generation fully-integrated ultrafast optical data processing technologies for many applications including ultra-fast optical information-processing, optical memory, measurement, computing systems, and real-time differential equation computing units.

It is based on a passive micro-ring resonator and performs the time integral of an arbitrary optical waveform with a time resolution of a few picoseconds, corresponding to a processing speed of around 200 GHz, and with a "hold" time approaching a nanosecond.

This represents an unprecedented processing time-bandwidth product (TBP) - a principal figure of merit, defined as the ratio between the integration time window to the fastest time feature that can be accurately processed - approaching 100 - much higher than advanced passive electronic integrators where the TBP is less than 10.

The research has just been published in a paper entitled On-chip CMOS compatible all-optical integrator in the international journal, Nature Communications.

Associate Professor Moss said using light for ultrahigh speed information processing, computing, and storage on a silicon chip was an important breakthrough.

"With society's demands for even faster technology, ultrafast optical computing and signal processing are important," he said.

"This on-chip optical integrator is a key to enabling many optical functions on a chip, including ultra high speed signal processing, computing, and optical memory.

"This technology will ultimately provide the consumer with cheaper and faster computers."

The device, based on high index doped silica glass, is low loss and has a high degree of manufacturability and design flexibility. This makes it an ideal ultrahigh speed optical integrator with a performance good enough not just for optical computing but for a wide range of applications including optical memory, real-time differential equation computing units, and many others.

Associate Professor Moss is a researcher with the Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), an ARC Centre of Excellence.

####

For more information, please click here

Contacts:
Media enquiries
Rachel Gleeson
0403 067 342, 9351 4312,

Copyright © University of Sydney

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Possible Futures

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Academic/Education

Nanotech Security Featured by Simon Fraser University: Company's Anti-Counterfeiting Technology Developed With the Help of University's 4D LABS Materials Research Institute August 21st, 2016

W.M. Keck Foundation awards Cal State LA a $375,000 research and education grant August 4th, 2016

Thomas Swan and NGI announce unique partnership July 28th, 2016

The NanoWizard® AFM from JPK is applied for interdisciplinary research at the University of South Australia for applications including smart wound healing and how plants can protect themselves from toxins July 26th, 2016

Chip Technology

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

Enhanced electron doping on iron superconductors discovered: IBS Centre for Correlated Electron Systems revises existing theories by raising the temperature for superconductivity August 17th, 2016

Optical computing/Photonic computing

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

Hexagonal boron nitride semiconductors enable cost-effective detection of neutron signals: Texas Tech University researchers demonstrate hexagonal boron nitride semiconductors as a cost-effective alternative for inspecting overseas cargo containers entering US ports August 17th, 2016

Prototype chip could help make quantum computing practical: Built-in optics could enable chips that use trapped ions as quantum bits August 9th, 2016

Scientists discover light could exist in a previously unknown form August 6th, 2016

Nanoelectronics

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Smarter self-assembly opens new pathways for nanotechnology: Brookhaven Lab scientists discover a way to create billionth-of-a-meter structures that snap together in complex patterns with unprecedented efficiency August 9th, 2016

Magnetic atoms arranged in neat rows: FAU physicists enable one-dimensional atom chains to grow August 5th, 2016

Swapping substrates improves edges of graphene nanoribbons: Using inert boron nitride instead of silica creates precise zigzag edges in monolayer graphene August 2nd, 2016

Announcements

New theory could lead to new generation of energy friendly optoelectronics: Researchers at Queen's University Belfast and ETH Zurich, Switzerland, have created a new theoretical framework which could help physicists and device engineers design better optoelectronics August 23rd, 2016

New flexible material can make any window 'smart' August 23rd, 2016

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

Nanoparticles that speed blood clotting may someday save lives August 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic