Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Silicon chips to enter world of high speed optical processing

An on-chip all-optical integrator under operation
An on-chip all-optical integrator under operation

Abstract:
Physicists at the University of Sydney have brought silicon chips closer to performing all-optical computing and information processing that could overcome the speed limitations intrinsic to electronics, with the first report published of an on-chip all-optical temporal integrator in Nature Communications today.

Silicon chips to enter world of high speed optical processing

Sydney | Posted on June 18th, 2010

An all-optical integrator, or lightwave capacitor, is a fundamental building block equivalent to those used in multi-functional electronic circuits.

Associate Professor David Moss, a senior researcher within the Institute for Photonic and Optical Science (IPOS), leads an international team which has developed the optical integrator on a CMOS compatible silicon chip.

The device, a photonic chip compatible with electronic technology (CMOS), will be a key enabler of next generation fully-integrated ultrafast optical data processing technologies for many applications including ultra-fast optical information-processing, optical memory, measurement, computing systems, and real-time differential equation computing units.

It is based on a passive micro-ring resonator and performs the time integral of an arbitrary optical waveform with a time resolution of a few picoseconds, corresponding to a processing speed of around 200 GHz, and with a "hold" time approaching a nanosecond.

This represents an unprecedented processing time-bandwidth product (TBP) - a principal figure of merit, defined as the ratio between the integration time window to the fastest time feature that can be accurately processed - approaching 100 - much higher than advanced passive electronic integrators where the TBP is less than 10.

The research has just been published in a paper entitled On-chip CMOS compatible all-optical integrator in the international journal, Nature Communications.

Associate Professor Moss said using light for ultrahigh speed information processing, computing, and storage on a silicon chip was an important breakthrough.

"With society's demands for even faster technology, ultrafast optical computing and signal processing are important," he said.

"This on-chip optical integrator is a key to enabling many optical functions on a chip, including ultra high speed signal processing, computing, and optical memory.

"This technology will ultimately provide the consumer with cheaper and faster computers."

The device, based on high index doped silica glass, is low loss and has a high degree of manufacturability and design flexibility. This makes it an ideal ultrahigh speed optical integrator with a performance good enough not just for optical computing but for a wide range of applications including optical memory, real-time differential equation computing units, and many others.

Associate Professor Moss is a researcher with the Centre for Ultrahigh Bandwidth Devices for Optical Systems (CUDOS), an ARC Centre of Excellence.

####

For more information, please click here

Contacts:
Media enquiries
Rachel Gleeson
0403 067 342, 9351 4312,

Copyright © University of Sydney

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

Possible Futures

Nanotechnology in Medical Devices Market is expected to reach $8.5 Billion by 2019 March 25th, 2015

Nanotechnology Enabled Drug Delivery to Influence Future Diagnosis and Treatments of Diseases March 21st, 2015

Nanocomposites Market Growth, Industry Outlook To 2020 by Grand View Research, Inc. March 21st, 2015

Nanotechnology Drug Delivery Market in the US 2012-2016 : Latest Report Available by Radiant Insights, Inc March 16th, 2015

Academic/Education

SUNY Poly CNSE and Title Sponsor SEFCU Name Capital Region Teams Advancing to the Final Round of the 2015 New York Business Plan Competition March 30th, 2015

LAMDAMAP 2015 hosted by the University March 26th, 2015

SUNY Poly & M+W Make Major Announcement: Major Expansion To Include M+W Owned Gehrlicher Solar America Corporation That Will Create up to 400 Jobs to Develop Solar Power Plants at SUNY Poly Sites Across New York State March 26th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

Chip Technology

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Next important step toward quantum computer: Scientists at the University of Bonn have succeeded in linking 2 different quantum systems March 30th, 2015

State-of-the-art online system unveiled to pinpoint metrology software accuracy March 27th, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

Optical computing/ Photonic computing

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Building shape inspires new material discovery March 24th, 2015

Scientists invent new way to control light, critical for next gen of super fast computing March 19th, 2015

New optical materials break digital connectivity barriers: Tel Aviv University researcher discovers novel nanoscale 'metamaterial' could serve as future ultra-high-speed computing units March 19th, 2015

Nanoelectronics

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

SUNY POLY CNSE to Host First Ever Northeast Semi Supply Conference (NESCO) Conference Will Connect New and Emerging Innovators in the Northeastern US and Canada with Industry Leaders and Strategic Investors to Discuss Future Growth Opportunities in NYS March 25th, 2015

UW scientists build a nanolaser using a single atomic sheet March 24th, 2015

Iranian Researchers Present Model to Determine Dynamic Behavior of Nanostructures March 24th, 2015

Announcements

Rutgers, NIST physicists report technology with potential for sub-micron optical switches March 31st, 2015

Prototype 'nanoneedles' generate new blood vessels in mice: Scientists have developed tiny 'nanoneedles' that have successfully prompted parts of the body to generate new blood vessels, in a trial in mice March 31st, 2015

Super sensitive measurement of magnetic fields March 31st, 2015

Nanomedicine pioneer Mauro Ferrari at ETH Zurich March 31st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE