Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Graphene makes light work of aircraft design

Abstract:
Faster and lighter aircraft could be built using an incredible super-thin material just one atom thick, according to new research conducted at The University of Manchester

Graphene makes light work of aircraft design

UK | Posted on June 16th, 2010

Writing in the journal Advanced Materials, a team of materials scientists and physicists say graphene has the potential to replace carbon fibres in high performance materials that are used to build aircraft.

Graphene - discovered in 2004 by physicists Prof Andre Geim and Dr Kostya Novoselov at The University of Manchester - is a two-dimensional layer of carbon atoms that resembles chicken wire.

As well as being an excellent conductor of electrons, with the potential to replace silicon, graphene is also one of the stiffest-known materials. A recent study found it to be the strongest material ever measured.

This led researchers to investigate its behaviour and properties when mixed with other materials.

A University of Manchester team, which included Dr Novoselov, put a single graphene sheet between two layers of polymer and used a technique called Raman spectroscopy to measure how the carbon bonds responded when the graphene was stretched.

Raman spectroscopy works by shining a laser light onto a molecule and then collecting and analysing the wavelength and intensity of the resulting scattered light.

The technique basically measures bond vibration between atoms. As researchers stretch the bond the vibration changes frequency. It can be compared to tuning a guitar string and hearing the pitch change.

Researchers were able to use Raman spectroscopy to look at the change of the vibrational energy of the bond and then worked out the change in bond length. From this information they calculated the improvement in stiffness the graphene gave to the polymer composite.

Professor Robert Young of the School of Materials, said: "We have found the theories developed for large materials still hold even when a material is just one atom thick."

"We can now start to use the decades of research into traditional carbon fibre composites to design the next generation of graphene-based materials."

Dr Ian Kinloch, a researcher in the School of Materials, commented: "This relatively new material continues to amaze, and its incredible properties could be used to make structural, lightweight components for fuel efficient vehicles and aircraft."

The research was supported by the Engineering and Physical Sciences Research Council (EPSRC) and the Royal Society.

The paper, ‘Interfacial Stress Transfer in a Graphene Monolayer Nanocomposite' by L. Gong, I. A. Kinloch, R. J. Young, I. Riaz, R. Jalil and K. S. Novoselov, is available on request.

####

For more information, please click here

Contacts:
Dan Cochlin
Media Relations
The University of Manchester

Tel: 0161 275 8387


Copyright © University of Manchester

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Possible Futures

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Johns Hopkins scientists track metabolic pathways to find drug combination for pancreatic cancer August 25th, 2016

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Tunneling nanotubes between neurons enable the spread of Parkinson's disease via lysosomes August 24th, 2016

McMaster researchers resolve a problem that has been holding back a technological revolution August 18th, 2016

'Second skin' protects soldiers from biological and chemical agents August 5th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

Announcements

Forces of nature: Interview with microscopy innovators Gerd Binnig and Christoph Gerber August 26th, 2016

A promising route to the scalable production of highly crystalline graphene films August 26th, 2016

Graphene under pressure August 26th, 2016

Nanofiber scaffolds demonstrate new features in the behavior of stem and cancer cells August 25th, 2016

Energy

New electrical energy storage material shows its power: Nanomaterial combines attributes of both batteries and supercapacitors August 25th, 2016

Lehigh engineer discovers a high-speed nano-avalanche: New findings published in the Journal of Electrochemical Society about the process involving transformations in glass that occur under intense electrical and thermal conditions could lead the way to more energy-efficient glas August 24th, 2016

New flexible material can make any window 'smart' August 23rd, 2016

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Automotive/Transportation

Researchers reduce expensive noble metals for fuel cell reactions August 22nd, 2016

Researchers watch catalysts at work August 19th, 2016

Stanford-led team reveals nanoscale secrets of rechargeable batteries August 8th, 2016

New X-Ray microscopy technique images nanoscale workings of rechargeable batteries: Method developed at Berkeley Lab's Advanced Light Source could help researchers improve battery performance August 7th, 2016

Aerospace/Space

University of Puerto Rico and NASA back in the news – XEI reports August 23rd, 2016

To Infinity and Beyond with Nanosatellites August 10th, 2016

Carbon nanotube 'stitches' make stronger, lighter composites: Method to reinforce these materials could help make airplane frames lighter, more damage-resistant August 4th, 2016

PPPL applies quantum theory and Einstein's special relativity to plasma physics issues July 31st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic