Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Colors of Butterfly Wing Yield Clues to Light-Altering Structures

The vivid green color of the scales of this Papilionid butterfly are produced by optically efficient single gyroid photonic crystals.
The vivid green color of the scales of this Papilionid butterfly are produced by optically efficient single gyroid photonic crystals.

Abstract:
At the very heart of some of the most brilliant colors on the wings of butterflies lie bizarre structures, a multidisciplinary team of Yale researchers has found. These structures are intriguing the team's scientists and engineers, who want to use them to harness the power of light.

Colors of Butterfly Wing Yield Clues to Light-Altering Structures

New Haven, CN | Posted on June 16th, 2010

The crystal nanostructures that ultimately give butterflies their color are called gryoids. These are "mind-bendingly weird" three-dimensional curving structures that selectively scatter light, said Richard Prum, chair and the William Robertson Coe Professor in the Department of Ornithology, Ecology and Evolutionary Biology. Prum led the Yale team, which reported its findings online in the Proceedings of the National Academy of Sciences.

Prum over the years became fascinated with the properties of the colors on butterfly wings and enlisted researchers to help study them from the Departments of Chemical Engineering, Physics and Mechanical Engineering, as well as the Yale School of Engineering and Applied Science.

Using an X-ray scattering technique at the Argonne National Laboratory in Illinois, Richard Prum, his graduate student Vinod Saranathan and their colleagues determined the three-dimensional internal structure of scales in the wings of five butterfly species.

The gyroid is made of chitin, the tough starchy material that forms the exterior of insects and crustaceans, Chitin is usually deposited on the outer membranes of cells. The Yale team wanted to know how a cell can sculpt itself into this extraordinary form, which resembles a network of three-bladed boomerangs. They found that, essentially, the outer membranes of the butterfly wing scale cells grow and fold into the interior of the cells. The membranes then form a double gyroid or two, mirror-image networks shaped by the outer and inner cell membranes. The latter are easier to grow but are not as good at scattering light. Chitin is then deposited in the outer gyroid to create a single solid crystal. The cell then dies, leaving behind the crystal nanostructures on the butterfly wing.

Photonic engineers are using gyroid shapes to try to create more efficient solar cells and, by mimicking nature, may be able to produce more efficient optical devices as well, Prum said.

Saranathan of Yale is the lead author of the paper. Other authors from Yael include Chinedum O. Osuji, Simon G. J. Mochrie, Heeso Noh and Eric R. Dufresne.

The work was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Press Contact
Bill Hathaway
203-432-1322

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Discoveries

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Announcements

A Tougher Tooth: A new dental restoration composite developed by UCSB scientists proves more durable than the conventional material August 22nd, 2017

Nagoya physicists resolve long-standing mystery of structure-less transition: Nagoya University-led team of physicists use a synchrotron radiation X-ray source to probe a so-called 'structure-less' transition and develop a new understanding of molecular conductors August 21st, 2017

Tokai University research: Nanomaterial wrap for improved tissue imaging August 21st, 2017

Silk could improve sensitivity, flexibility of wearable body sensors August 20th, 2017

Photonics/Optics/Lasers

Researchers printed graphene-like materials with inkjet August 17th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

High resolution without particle accelerator: A first for physics -- University of Jena physicists are first to achieve optical coherence tomography with XUV radiation at laboratory scale August 7th, 2017

Solar/Photovoltaic

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Fewer defects from a 2-D approach August 15th, 2017

Controlled manipulation: Scientists at FAU are investigating the properties of hybrid systems consisting of carbon nanostructures and a dye August 8th, 2017

Simultaneous Design and Nanomanufacturing Speeds Up Fabrication: Method enhances broadband light absorption in solar cells August 5th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project