Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Colors of Butterfly Wing Yield Clues to Light-Altering Structures

The vivid green color of the scales of this Papilionid butterfly are produced by optically efficient single gyroid photonic crystals.
The vivid green color of the scales of this Papilionid butterfly are produced by optically efficient single gyroid photonic crystals.

Abstract:
At the very heart of some of the most brilliant colors on the wings of butterflies lie bizarre structures, a multidisciplinary team of Yale researchers has found. These structures are intriguing the team's scientists and engineers, who want to use them to harness the power of light.

Colors of Butterfly Wing Yield Clues to Light-Altering Structures

New Haven, CN | Posted on June 16th, 2010

The crystal nanostructures that ultimately give butterflies their color are called gryoids. These are "mind-bendingly weird" three-dimensional curving structures that selectively scatter light, said Richard Prum, chair and the William Robertson Coe Professor in the Department of Ornithology, Ecology and Evolutionary Biology. Prum led the Yale team, which reported its findings online in the Proceedings of the National Academy of Sciences.

Prum over the years became fascinated with the properties of the colors on butterfly wings and enlisted researchers to help study them from the Departments of Chemical Engineering, Physics and Mechanical Engineering, as well as the Yale School of Engineering and Applied Science.

Using an X-ray scattering technique at the Argonne National Laboratory in Illinois, Richard Prum, his graduate student Vinod Saranathan and their colleagues determined the three-dimensional internal structure of scales in the wings of five butterfly species.

The gyroid is made of chitin, the tough starchy material that forms the exterior of insects and crustaceans, Chitin is usually deposited on the outer membranes of cells. The Yale team wanted to know how a cell can sculpt itself into this extraordinary form, which resembles a network of three-bladed boomerangs. They found that, essentially, the outer membranes of the butterfly wing scale cells grow and fold into the interior of the cells. The membranes then form a double gyroid or two, mirror-image networks shaped by the outer and inner cell membranes. The latter are easier to grow but are not as good at scattering light. Chitin is then deposited in the outer gyroid to create a single solid crystal. The cell then dies, leaving behind the crystal nanostructures on the butterfly wing.

Photonic engineers are using gyroid shapes to try to create more efficient solar cells and, by mimicking nature, may be able to produce more efficient optical devices as well, Prum said.

Saranathan of Yale is the lead author of the paper. Other authors from Yael include Chinedum O. Osuji, Simon G. J. Mochrie, Heeso Noh and Eric R. Dufresne.

The work was supported by the National Science Foundation.

####

For more information, please click here

Contacts:
Press Contact
Bill Hathaway
203-432-1322

Copyright © Yale University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

New nanodevice defeats drug resistance: Tiny particles embedded in gel can turn off drug-resistance genes, then release cancer drugs March 2nd, 2015

Forbidden quantum leaps possible with high-res spectroscopy March 2nd, 2015

Discoveries

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

The taming of magnetic vortices: Unified theory for skyrmion-materials March 3rd, 2015

Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible March 3rd, 2015

Announcements

CiQUS researchers obtain high-quality perovskites over large areas by a chemical method March 4th, 2015

Arrowhead to Present at 2015 Barclays Global Healthcare Conference March 4th, 2015

Nanosorbents Increase Extraction, Recycling of Silver from Aqueous Solutions March 4th, 2015

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Photonics/Optics/Lasers

Black phosphorus is new 'wonder material' for improving optical communication March 3rd, 2015

Breakthrough in OLED technology March 2nd, 2015

International research partnership tricks the light fantastic March 2nd, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

Solar/Photovoltaic

UC research partnership explores how to best harness solar power March 2nd, 2015

New nanowire structure absorbs light efficiently: Dual-type nanowire arrays can be used in applications such as LEDs and solar cells February 25th, 2015

Learning by eye: Silicon micro-funnels increase the efficiency of solar cells February 25th, 2015

Magnetic nanoparticles enhance performance of solar cells X-ray study points the way to higher energy yields February 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE