Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Nanospheres stretch limits of hard disk storage

Abstract:
A new magnetic recording medium made up of tiny nanospheres has been devised by European researchers. The technology may lead to hard disks able to store more than a thousand billion bits of information in a square inch.

Nanospheres stretch limits of hard disk storage

EU | Posted on June 15th, 2010

With consumer PCs now being sold with hard disks of a terabyte or more - enough to record more than two years of music - storage capacity seems to be expanding without limit. But the limits are there and industry insiders know that they are approaching fast.

Present-day hard disks record information on a ferromagnetic layer. The layer is made up of grains about 7 nanometres across and each ‘bit' of information is contained in a magnetised cell covering perhaps 60 to 80 grains. When the magnetic field is pointing one way a ‘1' is stored and when it points the opposite way a ‘0' is stored.

One way of packing information on to a disk would be to make the cells smaller. But with fewer grains per cell, the signal to noise ratio rises and with it the probability of a bit being misread.

The obvious answer is to use a recording medium with smaller grains, but then thermal stability problems arise. "Over time, if the thermal stability is not large enough, the magnetic orientation will flip to the opposite direction so it will lose its information," says Manfred Albrecht of the Chemnitz University of Technology.


Nanospheres
He favours a completely new approach using techniques from nanotechnology to construct a ‘patterned' recording surface made up not of irregular grains but of purpose-made magnetic cells. "The problem now is how can you produce these nanostructures on a large scale at low cost?"

Albrecht coordinated the EU-funded MAFIN project which sought to build regular arrays of cells from tiny magnetised nanospheres. The spheres are made of silica and are commercially available in a range of sizes. After testing many different sizes the MAFIN team settled on spheres 25 nanometres in diameter, bigger than conventional grains but smaller than normal storage cells.

The attraction of using nanospheres is that they will assemble themselves into a regular array. The nanospheres are mixed with an alcohol-based solution that is dropped on to the substrate. As the alcohol evaporates the spheres are left in a regular pattern.

"We then deposited a magnetic film on top of the particles to form a magnetic ‘cap'," Albrecht explains. "And if you do it right then this magnetic cap acts as a single magnet, with a north and a south pole, and the array can be used as a storage device."

Whether the cap is magnetised with a north or south pole upwards determines whether it is storing a ‘1' or a ‘0'.

Iron-platinum alloy
The magnetic film is an iron-platinum alloy that has already attracted interest within the magnetic storage industry. It is coated on to the nanospheres by magnetron-sputter deposition. As silica itself is non-magnetic, each cap is isolated from its neighbours and can hold its magnetisation well.

Self-assembly of the nanospheres is guided by pre-patterning of the silicate substrate by x-ray lithography to create tiny pits for the spheres to settle into.

"I believe that self-assembly-based approaches have the largest potential because they are not expensive," Albrecht says. "They are very low cost."

A spacing of 25 nanometres between spheres is equivalent to a storage density of one terabit (1000 gigabits) per square inch. Using the same approach with smaller spheres researchers should be able to attain densities up to six times higher.

As well as looking at the recording medium, MAFIN researchers have also investigated recording techniques. Iron-platinum is harder to magnetise than conventional media, so modifications will be needed to allow information to be easily recorded and read.

Opportunities for industry
The team investigated using a probe with a fine magnetic tip to magnetise and read each of the nanospheres instead of a conventional recording head.

MAFIN finished in May 2009 but its work has carried over into a successor EU project, TERAMAGSTOR. While MAFIN was concerned with a proof of concept, the new project aims to demonstrate a hard disk with a storage density exceeding one terabit per square inch.

Albrecht sees opportunities for European industry to develop the manufacturing processes that new, nanostructured storage media will require. "In Europe we don't have a real industry that produces hard drives," he says. "It's all in Asia and the USA. But we have manufacturers of deposition tools and expertise in sputter technology."

The glass substrates of conventional hard disks will not be suitable for the high-temperature processes needed to deposit alloys, so European companies with know-how in ceramic materials may also have a role to play.

MAFIN received funding from FET - Open initiative of the EU's Sixth Framework Programme for research.

####

For more information, please click here

Copyright © ICT Results

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Govt.-Legislation/Regulation/Funding/Policy

Success in Intracellular Imaging of Cesium Distribution in Plants Used for Cesium Absorption August 19th, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Novel chip-based platform could simplify measurements of single molecules: A nanopore-gated optofluidic chip combines electrical and optical measurements of single molecules onto a single platform August 14th, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Academic/Education

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

Oxford Instruments Asylum Research and the Center for Nanoscale Systems at Harvard University Present a Workshop on AFM Nanomechanical and Nanoelectrical Characterization, Aug. 21-22 August 6th, 2014

University of Manchester selects Anasys AFM-IR for coatings and corrosion research July 30th, 2014

Haydale Announces Collaboration Agreement with Swansea University’s Welsh Centre for Printing and Coatings (WCPC) July 12th, 2014

Chip Technology

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

AI Technology (AIT) Introduces Novel High Temperature Large Area Underfill with Proven Stress Absorption August 15th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Memory Technology

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

Can our computers continue to get smaller and more powerful? University of Michigan computer scientist reviews frontier technologies to determine fundamental limits of computer scaling August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

Rice's silicon oxide memories catch manufacturers' eye: Use of porous silicon oxide reduces forming voltage, improves manufacturability July 10th, 2014

Self Assembly

Nanocubes Get in a Twist : Competing forces coax nanocubes into helical structures August 11th, 2014

Self-assembly of gold nanoparticles into small clusters August 4th, 2014

Carnegie Mellon Chemists Create Nanofibers Using Unprecedented New Method July 31st, 2014

Berkeley Lab researchers create nanoparticle thin films that self-assemble in 1 minute June 9th, 2014

Announcements

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE