Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nanospheres stretch limits of hard disk storage

Abstract:
A new magnetic recording medium made up of tiny nanospheres has been devised by European researchers. The technology may lead to hard disks able to store more than a thousand billion bits of information in a square inch.

Nanospheres stretch limits of hard disk storage

EU | Posted on June 15th, 2010

With consumer PCs now being sold with hard disks of a terabyte or more - enough to record more than two years of music - storage capacity seems to be expanding without limit. But the limits are there and industry insiders know that they are approaching fast.

Present-day hard disks record information on a ferromagnetic layer. The layer is made up of grains about 7 nanometres across and each ‘bit' of information is contained in a magnetised cell covering perhaps 60 to 80 grains. When the magnetic field is pointing one way a ‘1' is stored and when it points the opposite way a ‘0' is stored.

One way of packing information on to a disk would be to make the cells smaller. But with fewer grains per cell, the signal to noise ratio rises and with it the probability of a bit being misread.

The obvious answer is to use a recording medium with smaller grains, but then thermal stability problems arise. "Over time, if the thermal stability is not large enough, the magnetic orientation will flip to the opposite direction so it will lose its information," says Manfred Albrecht of the Chemnitz University of Technology.


Nanospheres
He favours a completely new approach using techniques from nanotechnology to construct a ‘patterned' recording surface made up not of irregular grains but of purpose-made magnetic cells. "The problem now is how can you produce these nanostructures on a large scale at low cost?"

Albrecht coordinated the EU-funded MAFIN project which sought to build regular arrays of cells from tiny magnetised nanospheres. The spheres are made of silica and are commercially available in a range of sizes. After testing many different sizes the MAFIN team settled on spheres 25 nanometres in diameter, bigger than conventional grains but smaller than normal storage cells.

The attraction of using nanospheres is that they will assemble themselves into a regular array. The nanospheres are mixed with an alcohol-based solution that is dropped on to the substrate. As the alcohol evaporates the spheres are left in a regular pattern.

"We then deposited a magnetic film on top of the particles to form a magnetic ‘cap'," Albrecht explains. "And if you do it right then this magnetic cap acts as a single magnet, with a north and a south pole, and the array can be used as a storage device."

Whether the cap is magnetised with a north or south pole upwards determines whether it is storing a ‘1' or a ‘0'.

Iron-platinum alloy
The magnetic film is an iron-platinum alloy that has already attracted interest within the magnetic storage industry. It is coated on to the nanospheres by magnetron-sputter deposition. As silica itself is non-magnetic, each cap is isolated from its neighbours and can hold its magnetisation well.

Self-assembly of the nanospheres is guided by pre-patterning of the silicate substrate by x-ray lithography to create tiny pits for the spheres to settle into.

"I believe that self-assembly-based approaches have the largest potential because they are not expensive," Albrecht says. "They are very low cost."

A spacing of 25 nanometres between spheres is equivalent to a storage density of one terabit (1000 gigabits) per square inch. Using the same approach with smaller spheres researchers should be able to attain densities up to six times higher.

As well as looking at the recording medium, MAFIN researchers have also investigated recording techniques. Iron-platinum is harder to magnetise than conventional media, so modifications will be needed to allow information to be easily recorded and read.

Opportunities for industry
The team investigated using a probe with a fine magnetic tip to magnetise and read each of the nanospheres instead of a conventional recording head.

MAFIN finished in May 2009 but its work has carried over into a successor EU project, TERAMAGSTOR. While MAFIN was concerned with a proof of concept, the new project aims to demonstrate a hard disk with a storage density exceeding one terabit per square inch.

Albrecht sees opportunities for European industry to develop the manufacturing processes that new, nanostructured storage media will require. "In Europe we don't have a real industry that produces hard drives," he says. "It's all in Asia and the USA. But we have manufacturers of deposition tools and expertise in sputter technology."

The glass substrates of conventional hard disks will not be suitable for the high-temperature processes needed to deposit alloys, so European companies with know-how in ceramic materials may also have a role to play.

MAFIN received funding from FET - Open initiative of the EU's Sixth Framework Programme for research.

####

For more information, please click here

Copyright © ICT Results

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Researchers printed graphene-like materials with inkjet August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Possible Futures

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

Academic/Education

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Moving at the Speed of Light: University of Arizona selected for high-impact, industrial demonstration of new integrated photonic cryogenic datalink for focal plane arrays: Program is major milestone for AIM Photonics August 10th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

The Physics Department of Imperial College, London, uses the Quorum Q150T to deposit metals and ITO to make plasmonic sensors and electric contact pads July 13th, 2017

Chip Technology

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Surprise discovery in the search for energy efficient information storage August 10th, 2017

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

Memory Technology

Surprise discovery in the search for energy efficient information storage August 10th, 2017

Liquid electrolyte contacts for advanced characterization of resistive switching memories July 26th, 2017

Shining rings: A new material emits white light when exposed to electricity: New synthetic approach could spark development of other dynamic materials July 24th, 2017

Pulses of electrons manipulate nanomagnets and store information: Scientists use electron pulses to create and manipulate nanoscale magnetic excitations that can store data July 21st, 2017

Self Assembly

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Nanotubes that build themselves April 14th, 2017

Nanocages for gold particles: what is happening inside? March 16th, 2017

Announcements

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Gold shines through properties of nano biosensors: Researchers discover that fluorescence in ligand-protected gold nanoclusters is an intrinsic property of the gold particles themselves August 16th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project